
A more general categorical framework for
congruence of applicative bisimilarity
Tom Hirschowitz
Univ. Savoie Mont Blanc, CNRS, LAMA,
73000, Chambéry, France

Ambroise Lafont
University of Cambridge, United Kingdom

Abstract
We prove a general congruence result for bisimilarity in higher-order languages, which generalises
previous work [7, 18] to languages specified by a labelled transition system in which programs may
occur as labels, and which may rely on operations on terms other than capture-avoiding substitution.
This is typically the case for PCF, 𝜆-calculus with delimited continuations, and early-style bisimilarity
in higher-order process calculi.

2012 ACM Subject Classification Theory of computation → Denotational semantics; Theory of
computation → Operational semantics; Theory of computation → Process calculi; Theory of
computation → Categorical semantics

Keywords and phrases applicative bisimilarity, higher-order languages, congruence, category theory

1 Introduction

General congruence results for bisimilarity based on category theory date back at least to Turi
and Plotkin’s seminal paper [32], which covers labelled transition systems in a categorical
version of the Positive GSOS format [6]. The result was then extended to languages with
variable binding and renaming like the 𝜋-calculus [12, 31]. More recently, Borthelle et
al. [7, 18] managed to deal with a wider class of languages, whose operational semantics may
rely not only on renaming, but also on capture-avoiding substitution.

However, their result fails to cover significant languages to which Howe’s method has
been adapted, such as (variants of) PCF [17], 𝜆-calculus with delimited continuations [9, 5],
or (early-style) higher-order process calculi [30, 23]. The reason Borthelle et al.’s framework
does not cover such applications is that they are specified by labelled transition systems

in which programs may occur as labels, or
which rely on operations on terms other than capture-avoiding substitution.

In this paper, we extend Borthelle et al.’s result to such languages, which requires a
non-trivial extension of the proof method, essentially abstracting over ideas from Bernstein [4].

We introduce algebraic transition systems, which model transition systems whose
vertices (=states) bear some algebraic structure, and which may have arbitrary vertices
as labels. For such transition systems, we define enhanced bisimilarity as an abstract
counterpart to applicative bisimilarity

We introduce operational signatures, which allow us to generate algebraic transition
systems of interest, including all above-mentioned languages. Following initial-algebra
semantics [15], an operational signature specifies algebraic structure and transition rules,
and, in applications, the initial object in the category of models of an operational signature
is the desired syntactic transition system.

Finally, we prove (Theorem 52) that, under suitable conditions, enhanced bisimilarity in
the algebraic transition system generated by an operational signature is a congruence for the
considered algebraic structure. We also exhibit (Theorem 61) sufficient conditions that are

https://orcid.org/0000-0002-7220-4067
https://orcid.org/0000-0002-9299-641X

2 A more general categorical framework for congruence of applicative bisimilarity

easier to check in practice. This covers all above-mentioned applications, except higher-order
process calculi, whose operational signatures fail to satisfy the required conditions.

Related work
Beyond Borthelle et al. [18], which was discussed above, the most closely related work is
Goncharov et al.’s [16] bialgebraic framework for higher-order operational semantics. They
upgrade Turi and Plotkin’s [32] original presentation of operational semantics as a natural
transformation into a dinatural transformation, which allows them to cover transitions with
programs as labels. Their main applications are strong variants of applicative bisimilarity for
pure 𝜆-calculus (call-by-name and call-by-value). In its current state, their framework cannot
handle non-deterministic computation, hence in particular weak variants of bisimilarity.

Plan
We start in §2 with an overview of the development. In §3, we then present our running
example, which will be used as the basis of our abstraction process. We then introduce our
abstract notions of transition systems (§4), and algebraic transition systems (§5), together
with bisimilarity and its enhanced variant. Finally, we introduce operational signatures and
state our main results in §6, and conclude in §7.

Prerequisites and notations
We assume some basic knowledge of category theory [24], notably including factorisation
systems and monad distributive laws [3]. Additionally, we rely in places on locally presentable
categories [1], but this may be taken as technical, and ignored on a first reading. We often
conflate natural numbers 𝑛 with sets {1, . . . , 𝑛}. We denote by n the corresponding ordinal
viewed as a category, so that, e.g., 𝒞2 is the usual category of morphisms in 𝒞. We let CAT
denote the category of locally small categories. Moreover, we denote by Ĉ the category of
(contravariant) presheaves over a given category C, and by y : C→ Ĉ the Yoneda embedding.
Furthermore, we recall that endofunctor algebras differ from monad algebras. (A monad
algebra structure must be suitably compatible with unit and multiplication.) We write 𝐹 - alg
for endofunctor algebras, and 𝑇 - Alg for monad algebras (capital ‘A’!). Finally, for any
endofunctor 𝐹 on a sufficiently nice category, e.g., a presheaf category, we write 𝐹∗ for the free
monad on 𝐹, which is furthermore algebraically free in the sense that 𝐹 - alg � 𝐹∗ - Alg.

2 Overview

The development roughly follows [18]. We summarise it here, emphasising the differences.
Our running example throughout is a pure 𝜆-calculus with delimited continuations [5].

2.1 Transition systems
Let us first sketch our notion of transition system, starting from graphs. Consider the
diagonal functor Δ : Set→ Set, defined by Δ(𝑋) = 𝑋2. A graph consists of two sets 𝐸 and 𝑉 ,
equipped with two maps 𝐸 → 𝑉 , or equivalently a map 𝐸 → Δ(𝑉).

Hirschowitz and Lafont [18] propose a “typed” generalisation: they postulate a category
VT of vertex types, a category ET of edge types, and two functors s, t : ET → VT
associating to each edge type the types of its source and target. A transition system in
their sense consists of a vertex object 𝑉 in V̂T, a edge object 𝐸 ∈ ÊT, and a morphism

T. Hirschowitz and A. Lafont 3

𝐸 → Δ(𝑉), where Δ : V̂T→ ÊT maps any 𝑉 to Δ(𝑉) (𝛼) = 𝑉 (s(𝛼)) × 𝑉 (t(𝛼)), for all 𝛼 ∈ ET.
Taking VT = ET = 1, one recovers plain graphs.

In this paper, in order to account for labels, we generalise this by adding a functor l
associating to each edge type 𝛼 ∈ ET a sequence l(𝛼) = (l𝛼1 , . . . , l𝛼𝑛𝛼) of vertex types. A tuple
(VT,ET, s, t, l) is called a Howe context. Let us fix one for the rest of this section.

We modify Δ accordingly, defining it by

Δ(𝑉) (𝛼) = 𝑉 (s(𝛼)) ×
(
𝑛𝛼∏
𝑖=1

𝑉 (l𝛼𝑖)
)
× 𝑉 (t(𝛼)).

A transition system again consists of objects 𝑉 ∈ V̂T and 𝐸 ∈ ÊT, together with a morphism
𝐸 → Δ(𝑉), which means that, to each edge, we associate a source, a target, and a sequence of
labels of suitable types. For such transition systems, we define a generalisation of bisimulation,
straightforwardly.

2.2 Algebraic transition systems and enhanced bisimilarity

Let us now briefly explain the notion of algebraic structure that we adopt. Following Fiore
et al. [11, 13], Borthelle et al. [7, 18] use Σ-monoids, which are designed to model syntax
with substitution. In this paper, relying on Hirschowitz and Lafont [19], we adopt a different
notion of algebraic structure designed to cover syntax with more general additional operations.

I Definition 1. An enhanced syntax (on V̂T) consists of

finitary functors Σ : V̂T→ V̂T and Γ : V̂T
2 → V̂T such that Γ is left-cocontinuous, i.e.,

cocontinuous in its first argument, equipped with
a distributive law 𝛿 : 𝑇 ◦ 𝑆 → 𝑆 ◦ 𝑇 , where 𝑆 = Σ∗ denotes the monad freely generated by Σ

and 𝑇 = Γ∗
𝑆

the one generated by 𝑋 ↦→ Γ(𝑋, 𝑆(𝑋)).
Here, Σ models basic syntax, and Γ models additional operations like substitution. The fact
that Γ is a bifunctor is for distinguishing a “main” occurrence in its arity, which is used below in
the definition of enhanced bisimilarity. The distributive law models commutation of additional
operations with basic ones, at the main occurrence (typically (𝑀 𝑁) [𝜎] = 𝑀 [𝜎] 𝑁 [𝜎]).

Following initial-algebra semantics [15], the main object of interest here is the initial
Σ-algebra 𝑆(∅), and the main point is that it automatically possesses 𝑇-algebra structure,
given by the composite 𝑇 (𝑆(∅)) 𝛿∅−−→ 𝑆(𝑇 (∅)) � 𝑆(∅) (the initial object is a 𝑇-algebra by
cocontinuity, hence 𝑇 (∅) � ∅). This algebra structure in fact makes 𝑆(∅) into an initial
algebra for the composite monad 𝑆𝑇 .

Fixing some enhanced syntax 𝜎 = (Σ, Γ, 𝛿), for us, an algebraic transition system is thus
a transition system 𝐸 → Δ(𝑉), equipped with 𝑆𝑇-algebra structure on 𝑉 . We call such
transition systems 𝜎-algebraic.

Finally, for any 𝜎-algebraic transition system 𝐺 = (𝐸,𝑉, 𝜕), we define enhanced bisim-
ilarity, denoted by ∼𝜎

𝐺
, as the greatest bisimulation 𝑅 which is enhanced, in the sense that

Γ(𝑅,𝑉) ⊆ 𝑅 – this is where we use the fact that Γ is a bifunctor. In concrete instances, as
noticed by Borthelle et al. [7, 18], enhanced bisimilarity agrees with applicative bisimilarity.

The goal is then to prove that, in algebraic transition systems 𝐺 of interest, enhanced
bisimilarity ∼𝜎

𝐺
is a congruence, i.e., Σ(∼𝜎

𝐺
) ⊆ ∼𝜎

𝐺
.

4 A more general categorical framework for congruence of applicative bisimilarity

2.3 Operational signatures
For this, we restrict attention to algebraic transition systems generated by a suitable notion
of operational signature, which we now describe. Operational signatures comprise two
components, one for generating an enhanced syntax, the other for specifying transition rules.

I Definition 2. A syntactic signature is an endofunctor Σ equipped with a sequence

𝑇0 = id
(Γ1 ,𝑑1)−−−−−−→ 𝑇1 . . . 𝑇𝑛−1

(Γ𝑛 ,𝑑𝑛)−−−−−−→ 𝑇𝑛 (1)

of incremental structural laws [19]. An incremental structural law 𝑇 → 𝑇 ′ consists of a
finitary, left-cocontinuous bifunctor Γ : V̂T

2 → V̂T, together with a natural transformation
𝑑𝑋,𝑌 : Γ(Σ(𝑋), 𝑌) → 𝑆(𝑇 (Γ(𝑋, 𝑆(𝑇 (𝑌))) + 𝑋 + 𝑌)), such that 𝑇 ′ = 𝑇 ⊕ Γ∗

𝑆
, where ⊕ denotes

monad coproduct.

In examples, a natural transformation 𝑑𝑋,𝑌 amounts to a definition by structural recursion,
where the first argument of Γ models the decreasing occurrence of the argument, and the
second argument models other occurrences. Given any syntactic signature (1), the given
incremental structural laws induce distributive laws 𝛿𝑖 : 𝑇𝑖 ◦ 𝑆 → 𝑆 ◦ 𝑇𝑖, hence in particular
𝛿𝑛 : 𝑇𝑛 ◦ 𝑆 → 𝑆 ◦𝑇𝑛, and furthermore we have 𝑇𝑛 = (

∑
𝑖 Γ𝑖)∗𝑆 . Thus, letting d denote the given

syntactic signature, the triple 𝜎(d) = (Σ,∑𝑖 Γ𝑖 , 𝛿𝑛) forms an enhanced syntax. As a bonus,
one can show that algebras for the composite monad 𝑆𝑇𝑛 are equivalently objects equipped
with suitably coherent algebra structure for Σ and each functor 𝑋 ↦→ Γ𝑖 (𝑋, 𝑋).

The next step is to specify the dynamics of algebraic transition systems of interest. This is
done by introducing dynamic signatures. Roughly, a dynamic signature over an enhanced
syntax 𝜎 is an endofunctor on 𝜎-algebraic transition systems, which is required to preserve
the vertex object and satisfy a suitable “structuralness” condition inspired by structural
operational semantics [26]. Intuitively, a dynamic signature Σ1 is a family of transition rules,
and structuralness demands that, in each transition rule, the source of the conclusion has
depth at most one.

Pursuing the analogy, 𝜎-algebraic transition systems satisfying the rules are a special
kind of Σ1-algebras which we call vertical. Verticality means that the algebra structure is
trivial on vertices: this enforces that satisfying the rules is only about edges, not vertices.

Finally, an operational signature consists of a syntactic signature d, and a dynamic
signature Σ1 on 𝜎(d). The real object of interest is here the initial vertical Σ1-algebra, say
Z = (𝐸Z, 𝑉Z, 𝜕Z), which in applications is the desired syntactic transition system.

2.4 Congruence of enhanced bisimilarity
Our goal is then to prove that, under suitable hypotheses, enhanced bisimilarity ∼𝜎 (d)Z in the
initial vertical Σ1-algebra is a congruence. For this, abstracting over Bernstein’s [4] proof,
we start by defining flexible bisimulation, a variant of Sangiorgi’s BA-bisimulation [29].
Flexible bisimulation is like plain bisimulation: given related elements 𝑒 and 𝑒′, any transition
from 𝑒 should be matched by some transition from 𝑒′. The difference is that, instead of
having the same label, the matching transition should exist for any related label. Defining
functional flexible bisimulations to be morphisms of algebraic transition systems whose
graph is a flexible bisimulation, our main result (Theorem 52) states that if the dynamic
signature Σ1 preserves functional flexible bisimulations, then ∼𝜎 (d)Z is a congruence.

Finally, preservation of functional flexible bisimulations is quite an abstract condition,
so we set out to design a more concrete criterion for making the result easier to apply. In

T. Hirschowitz and A. Lafont 5

fact, if the considered dynamic signature Σ1 is familial [10, 8, 33, 14], then preservation of
functional flexible bisimulations becomes quite tractable, as we now explain. Following Joyal
et al. [22], we first characterise functional flexible bisimulations as the right class of a weak
factorisation system [20, 28] – we call the left class cofibrations. Furthermore, when the
dynamic signature is familial, a transition rule with conclusion of type any 𝛼, is intutively an
element of Σ1 (1) (𝛼), and we extract for each rule two algebraic transition systems 𝐴 and 𝐵,
and a morphism 𝜑 : 𝐴→ 𝐵, such that, intuitively, 𝐴 describes the metavariables occurring in
the source and label of the conclusion, 𝐵 describes all metavariables in the rule, including
transition premises, and 𝜑 embeds the former into the latter. We call 𝜑 the border arity of
the rule. The main point is then that a familial Σ1 preserves functional flexible bisimulations
iff all border arities are cofibrations (Theorem 61). How is this any more concrete? Well,
cofibrations are well-known to be closed under composition and cobase change, so in order to
check preservation of functional flexible bisimulations, it suffices to reconstruct the border
arity of each rule from generating cofibrations, by composition and cobase change. This
reconstruction process is close in spirit to usual acyclicity criteria [21, 4].

I Example 3. Taking algebraic transition systems to be just plain graphs, for a rule like
𝑎 → 𝑏 𝑏 → 𝑐

𝑎 → 𝑐
, 𝐴 would be the one-vertex graph, 𝐵 would consist of two composable

edges 𝑥 → 𝑦 → 𝑧, and 𝜑 would pick 𝑥. To check that it is a cofibration, we reconstruct it as
the bottom composite in [0] [1]

𝐴 = [0] [1] 𝐵.

𝑠

𝑠

As an application, we recover congruence of applicative bisimilarity in the considered 𝜆-
calculus with delimited continuations [5].

3 A concrete example

As a concrete example result that we want to abstract over, let us recall the case of 𝜆-calculus
with delimited continuations. We present it in a non-standard way in order for it to fit the
abstract framework. Indeed, the framework is based on structural operational semantics [26],
in the sense that, in each transition rule, the source of the conclusion has depth at most
one. Following [7, 18], we also present the definition of the open extension of applicative
bisimilarity to make it compatible with the abstract developments to come.

The syntax, presented in the usual, informal way, is as below left,

Values 3 𝑣 ::= 𝑥 | 𝜆𝑥.𝑒 �[𝑒] = 𝑒 (2)
Programs 3 𝑒 ::= 𝑣 | 𝑒1 𝑒2 | 𝒮𝑥.𝑒 | 〈𝑒〉 (𝑣 𝐸) [𝑒] = 𝑣 𝐸 [𝑒] (3)

Evaluation contexts 3 𝐸 ::= � | 𝐸 𝑒 | 𝑣 𝐸 (𝐸 𝑒′) [𝑒] = 𝐸 [𝑒] 𝑒′. (4)

where 𝑥 binds in 𝑒, in both 𝜆𝑥.𝑒 and 𝒮𝑥.𝑒. Capture-avoiding substitution and context
application are defined as usual. E.g., context application is defined as above right. The
dynamics are governed by the rules in Figure 1. There are three kinds of transitions, of
types 𝑒 𝜏−→ 𝑒′, 𝑒 𝑣−→ 𝑒′, 𝑒 𝐸−→ 𝑒′, where all expressions are closed. The first four rules deal with
functions. The first two rules suffice to make (𝛽) derivable, as shown in Figure 1. The next
two rules are the usual context rules. The last three rules, where 𝛼 ranges over all labels,
enforce that we work with weak bisimulation: we close transitions under composition with
silent transitions. The remaining rules describe the dynamics of 𝒮𝑥.𝑒 and 〈𝑒〉, which are

6 A more general categorical framework for congruence of applicative bisimilarity

𝑒1
𝑣−→ 𝑒2

𝑒1 𝑣
𝜏−→ 𝑒2

(𝛽′)
𝜆𝑥.𝑒

𝑣−→ 𝑒[𝑥 ↦→ 𝑣]

𝑒1
𝜏−→ 𝑒′1

𝑒1 𝑒2
𝜏−→ 𝑒′1 𝑒2

𝑒2
𝜏−→ 𝑒′2

𝑣 𝑒2
𝜏−→ 𝑣 𝑒′2 〈𝑣〉 𝜏−→ 𝑣

𝑒
𝜏−→ 𝑒′

〈𝑒〉 𝜏−→ 〈𝑒′〉

𝑒
�−→ 𝑒′

〈𝑒〉 𝜏−→ 𝑒′

𝑒1
𝐸 [� 𝑒2]−−−−−−−→ 𝑒3

𝑒1 𝑒2
𝐸−→ 𝑒3

(SA)

𝑒1
𝐸 [𝑣 �]
−−−−−−→ 𝑒2

𝑣 𝑒1
𝐸−→ 𝑒2 𝒮𝑘.𝑒

𝐸−→ 〈𝑒[𝑘 ↦→ 𝜆𝑥.〈𝐸 [𝑥]〉]〉

𝑒
𝜏−→ 𝑒

𝑒1
𝜏−→ 𝑒2

𝛼−→ 𝑒3

𝑒1
𝛼−→ 𝑒3

𝑒1
𝛼−→ 𝑒2

𝜏−→ 𝑒3

𝑒1
𝛼−→ 𝑒3

Deriving 𝛽:
𝜆𝑥.𝑒

𝑣−→ 𝑒[𝑥 ↦→ 𝑣]

(𝜆𝑥.𝑒) 𝑣 𝜏−→ 𝑒[𝑥 ↦→ 𝑣]
(𝛽′)

Figure 1 Transition rules

respectively called shift and reset. The first two of them enforce that silent computation
occurs normally inside any reset, and if it succeeds, i.e., if it results in a value, then the
reset disappears. The next rules describe how shift captures the ambient context up to the
enclosing reset, say 𝐸, and substitutes its reification 𝜆𝑘.〈𝐸 [𝑘]〉 as a value for the bound
variable, placing a new reset around the result.

Bisimulation is then as expected:

I Definition 4. A binary relation 𝑅 between closed programs is a simulation iff for all
𝑒 𝑅 𝑒′ and transitions 𝑒 𝛼−→ 𝑒1, there exists a transition 𝑒′

𝛼−→ 𝑒′1 such that 𝑒1 𝑅 𝑒′1. A
bisimulation is a simulation whose converse relation also is a simulation.

I Definition 5 ([7, 18]). A relation 𝑅 on potentially open expressions is enhanced iff it is
closed under substitution, context composition, and context application, i.e., 𝑎 𝑅 𝑎′ entails
𝑎[𝜎] 𝑅 𝑎′[𝜎] for all substitutions 𝜎, 𝐸 𝑅 𝐸 ′ entails 𝐸 [𝑒] 𝑅 𝐸 ′[𝑒] and 𝐸 [𝐸 ′′] 𝑅 𝐸 ′[𝐸 ′′], for
all 𝑒 and 𝐸 ′′.

An enhanced bisimulation is an enhanced relation 𝑅 whose restriction to closed
programs is a bisimulation.

I Proposition 6. There is a largest enhanced bisimulation, called applicative bisimilarity.

The result that we want to abstract over is:

I Theorem 7 (generalised variant of [5, Theorem 1]). Applicative bisimilarity is a congruence,
in the sense that it is preserved by all constructions of the language.

I Remark 8. It is not entirely trivial that this agrees with Biernacki and Lenglet’s presentation.
In fact, their transition system only differs in that they replace rule (𝛽′) with the standard rule
(𝛽). We have already seen that (𝛽) is derivable from (𝛽′), and conversely (𝛽′) is admissible in
their transition system. Indeed, suppose given any transition 𝑒1

𝑣−→ 𝑒2. By an easy induction,
there exist transitions 𝑒1

𝜏−→ 𝜆𝑥.𝑒3
𝑣−→ 𝑒3 [𝑥 ↦→ 𝑣] 𝜏−→ 𝑒2. Hence, grouping saturation rules, we

derive (𝛽) as follows.

𝑒1
𝜏−→ 𝜆𝑥.𝑒3

𝑒1 𝑣
𝜏−→ (𝜆𝑥.𝑒3) 𝑣 (𝜆𝑥.𝑒3) 𝑣

𝜏−→ 𝑒3 [𝑥 ↦→ 𝑣] 𝑒3 [𝑥 ↦→ 𝑣] 𝜏−→ 𝑒2

𝑒1 𝑣
𝜏−→ 𝑒2

T. Hirschowitz and A. Lafont 7

Our problem is that this result is not an instance of Borthelle et al.’s [18, Theorem 6.15],
because the dynamics rely on two features that are not handled:
(a) operations on terms, context application and composition, which differ from substitution,
(b) and contexts and values occurring as labels.
For (a), context application and composition might be encodable in Borthelle et al.’s setting,
perhaps by resorting to the skew monoidal variant [7]. But this is quite artificial, and requires
extra work that should not be necessary. For (b), it appears to be a hard obstruction.

4 Transition systems in the abstract

In this section, we start to abstract over the development of §3, by introducing a notion of
labelled transition system, together with its associated notion of bisimilarity.

4.1 Howe contexts
Let us start by formally introducing Howe contexts, as sketched in §2.

I Definition 9. A Howe context consists of
a small category VT of state types,
a small category ET of transition types,
source and target functors s, t : ET→ VT, and
a label functor l : ET→ V̂T, such that each l(𝑐) is a finite coproduct of representables.

I Example 10. For plain graphs, we would take:
VT to be the terminal category, because there is just one kind of vertex,
ET to also be the terminal category, because there is just one kind of edge,
the source and target functors both are the unique functor 1→ 1, and
the label functor to map the unique object to the empty coproduct, i.e., ∅.

I Example 11. For modelling the transition system of §3, we need a presheaf on VT to
be equivalent to a triple of functors 𝑉p, 𝑉v, 𝑉c : F→ Set, where F denotes a skeleton of the
category of finite sets, e.g., finite ordinals and all maps between them, equipped with a
natural transformation 𝜄 : 𝑉v → 𝑉p, or otherwise said to a functor F → Set1+2. We think
of 𝑉p (𝑛), 𝑉v (𝑛), and 𝑉c (𝑛) as sets of programs, values, and contexts with 𝑛 free variables,
respectively. For making this into a presheaf category, let us first observe that such tuples
(𝑉p, 𝑉v, 𝑉c, 𝜄) are precisely the objects of the oplax limit of the functor Δy𝑖𝑛1 : �Fop + Fop → F̂op

mapping any copairing [𝑉p, 𝑉c] to 𝑉p. But, as we now recall, oplax limits of this form are
equivalent to presheaf categories.

I Definition 12. For any small categories X and Y, and functor 𝐹 : X→ Ŷ, the collage of 𝐹,
denoted by Y[X]𝐹 , or merely Y[X] when 𝐹 is clear from context, has as objects the disjoint
union of those of X and Y, and morphisms defined by cases as follows.

X[Y] (𝑥, 𝑥 ′) = X(𝑥, 𝑥 ′)
X[Y] (𝑦, 𝑦′) = Y(𝑦, 𝑦′)

X[Y] (𝑦, 𝑥) = 𝐹 (𝑥) (𝑦)
X[Y] (𝑥, 𝑦) = ∅

Composition is defined as in X and Y in both left-hand cases, and otherwise by action of 𝐹.

I Proposition 13 ([8, Lemma 4.9]). For any small categories X and Y, and functor 𝐹 : X→ Ŷ,
letting Δ𝐹 (𝑌) (𝑥) = Ŷ(𝐹 (𝑥), 𝑌) denote the induced nerve functor Ŷ→ X̂, the oplax limit X̂/Δ𝐹
is equivalent to the category Ŷ[X] of presheaves on the collage of 𝐹.

8 A more general categorical framework for congruence of applicative bisimilarity

Now, the above functor Δy𝑖𝑛1 is indeed the nerve of Fop 𝑖𝑛1−−→ Fop + Fop y
−→ �Fop + Fop since we

have Δy𝑖𝑛1 [𝑉p, 𝑉c] (𝑛) = 𝑉p (𝑛) = [𝑉p, 𝑉c] (𝑖𝑛1 (𝑛)) = �Fop + Fop (y(𝑖𝑛1 (𝑛)), [𝑉p, 𝑉c]). We obtain:

I Corollary 14. Letting VT = (Fop + Fop) [Fop]y𝑖𝑛1 , we have [F, Set1+2] ' V̂T.

I Notation 1. We denote objects 𝑖𝑛1𝑛, 𝑖𝑛2𝑛, and 𝑖𝑛3𝑛 of VT by 𝑛v, 𝑛p, 𝑛c, respectively,
for values, programs, and contexts. For any 𝑉 ∈ V̂T, we denote the corresponding functors
F→ Set by 𝑉v, 𝑉p, and 𝑉c, so that, e.g., 𝑉 (𝑛v) = 𝑉v (𝑛).

Let us now define ET = 3 = {[𝜏], [v], [c]}, where [𝛼] indicates a label of type 𝛼. Accord-
ingly, writing 𝑐 : 𝑎 𝐿−→ 𝑏 for s(𝑐) = 𝑎, l(𝑐) = 𝐿, and t(𝑐) = 𝑏, and respectively interpreting 𝜏,
v, and c as ∅, yv, and yc, we put: [𝛼] : 0p

𝛼−→ 0p, for all 𝛼 ∈ {𝜏, v, c}.

4.2 Generalised transition systems
Let us now introduce transition systems. Let us fix a Howe context H = (VT,ET, s, t, l) for
the whole subsection, and start by relating both categories V̂T and ÊT.

I Definition 15. We define four functors V̂T→ ÊT as follows, for all 𝑉 ∈ V̂T and 𝛼 ∈ ET.

Δs (𝑉) (𝛼) = 𝑉 (s(𝛼))
Δt (𝑉) (𝛼) = 𝑉 (t(𝛼))

Δl (𝑉) (𝛼) = V̂T(l(𝛼), 𝑉)
ΔH (𝑉) = Δs (𝑉) × Δl (𝑉) × Δt (𝑉),

I Notation 2. We often abbreviate ΔH to Δ when H is clear from context. We also use
juxtaposition of indices to denote product of the corresponding functors, e.g., Δs,l := Δs × Δl.

I Definition 16. An H-transition system 𝐺 consists of a vertex presheaf 𝑉𝐺 ∈ V̂T, an
edge presheaf 𝐸𝐺 ∈ ÊT, and a border natural transformation 𝜕𝐺 : 𝐸𝐺 → Δ(𝑉𝐺).

I Remark 17. Letting l(𝛼) = ∑
𝑖∈𝑛𝛼 yl𝛼

𝑖
, we have Δl (𝑉) (𝛼) = [

∑
𝑖∈𝑛𝛼 yl𝛼

𝑖
, 𝑉] � ∏

𝑖∈𝑛𝛼 𝑉 (l𝛼𝑖) for
any 𝛼 ∈ ET and 𝑉 ∈ V̂T. The border natural transformation thus has type

𝐸 (𝛼) → 𝑉 (s(𝛼)) × (∏𝑖∈𝑛𝛼 𝑉 (l𝛼𝑖)) ×𝑉 (t(𝛼)).

I Example 18. Let us unfold the definition for the Howe context of Example 11: a transition
system consists of presheaves 𝑉 ∈ V̂T and 𝐸 ∈ ÊT, equipped with maps

𝐸 [𝜏] → 𝑉p (0)2 𝐸 [v] → 𝑉p (0) ×𝑉v (0) ×𝑉p (0) 𝐸 [c] → 𝑉p (0) ×𝑉c(0) ×𝑉p (0).

We now equip H-transition systems with morphisms:

I Proposition 19. H-transition systems are precisely the objects of the oplax limit category
ÊT/Δ of the functor V̂T

Δ−→ ÊT in CAT, or equivalently the comma category idÊT ↓ Δ.

Proof. An object of the oplax limit is by definition a triple (𝐸,𝑉, 𝜕 : 𝐸 → Δ(𝑉)). J

I Definition 20. Let H -Trans = ÊT/ΔH.

4.3 Bisimulation and bisimilarity
We now want to define bisimulation and bisimilarity, for any fixed Howe context H =

(VT,ET, s, t, l). Let us start with the notion of simulation.

T. Hirschowitz and A. Lafont 9

I Notation 3. A span is a pair of morphisms with the same source. In a category with binary
products, we often write spans 𝑋 ← 𝑅 → 𝑌 as their pairings 𝑅 → 𝑋 ×𝑌 . The converse of a
span 〈 𝑓 , 𝑔〉 : 𝑅 → 𝑋 × 𝑌 is the composite 〈𝑔, 𝑓 〉 : 𝑅 → 𝑋 × 𝑌 .

In a presheaf category Ĉ, for any span 𝑗 : 𝑅 → 𝑋 ×𝑌 , object 𝑐 ∈ C, and element 𝑟 ∈ 𝑅(𝑐),
we write 𝑟 : 𝑥 𝑅 𝑦 when 𝑗𝑐 (𝑟) = (𝑥, 𝑦). We call 𝑟 a witness that 𝑥 and 𝑦 are related by 𝑅.

Finally, in any H-transition system 𝐺, for any transition type 𝛼 with l(𝛼) � ∑
𝑖∈𝑛𝛼 yl𝛼

𝑖
,

we write 𝑒 : 𝑥
𝛼(𝑙1 ,...,𝑙𝑛𝛼)−−−−−−−−−−→ 𝑦 to mean that 𝑒 ∈ 𝐸𝐺 (𝛼) and 𝜕𝐺 (𝑒) = (𝑥, (𝑙1, . . . , 𝑙𝑛𝛼), 𝑦).

I Definition 21. For any H-transition system 𝐺 = (𝑉, 𝐸, 𝜕 : 𝐸 → Δ𝑉), a given span 𝑗 : 𝑅 →
𝑉2 is a simulation when, for any transition 𝑒 : 𝑥

𝛼(𝑙1 ,...,𝑙𝑛𝛼)−−−−−−−−−−→ 𝑥 ′ and witness 𝑟 : 𝑥 𝑅 𝑦, there
exists a transition 𝑓 : 𝑦

𝛼(𝑙1 ,...,𝑙𝑛𝛼)−−−−−−−−−−→ 𝑦′ and a witness 𝑟 ′ : 𝑥 ′ 𝑅 𝑦′, as in

𝑥 𝑅(s(𝛼)) 𝑦

𝑥 ′ 𝑅(t(𝛼)) 𝑦′.

𝑒 : 𝛼(𝑙1 ,...,𝑙𝑛𝛼) 𝑓 : 𝛼(𝑙1 ,...,𝑙𝑛𝛼) (5)

A span is a bisimulation when it is a simulation and so is its converse. A bisimulation
relation is a bisimulation which is also a relation, i.e., a mono 𝑅 ↩→ 𝑉2.

I Proposition 22. The full subcategory Bisim(𝐺) of V̂T/𝑉2 spanning bisimulations admits a
terminal object, which we call bisimilarity and denote by ∼𝐺.

Proof. Bisimulation relations are stable under unions, so that a terminal object is given by
the union of them all. J

5 Algebraic transition systems

In this section, we explain enhanced syntax, algebraic transition systems, and enhanced
bisimulation in a bit more detail than in §2.2. The notion of enhanced syntax has already been
introduced (Definition 1), and we fix a Howe context H = (VT,ET, s, t, l) and an enhanced
syntax 𝜎 = (Σ, Γ, 𝛿 : 𝑇𝑆 → 𝑆𝑇), where, we recall, 𝑆 = Σ∗ and 𝑇 = Γ∗

𝑆
.

5.1 Enhanced syntax
I Definition 23. We call 𝑆𝑇-algebras 𝜎-algebras for short, and let 𝜎 - Alg = 𝑆𝑇 - Alg.

I Proposition 24. The initial Σ-algebra 𝑆∅ is automatically a 𝑇-algebra, with structure map
𝑇𝑆∅ 𝛿∅−−→ 𝑆𝑇∅ �−→ 𝑆∅.

Proof. By cocontinuity, ∅ is a Γ𝑆-algebra: we have Γ(∅, 𝑆(∅)) � ∅. It is thus an initial
Γ𝑆-algebra, hence an initial 𝑇-algebra since Γ𝑆 - alg � 𝑇 - Alg. J

I Example 25. Following up on Example 11, the syntax and additional operations of §3 may
be presented by an incremental structural law on V̂T, as follows. First, basic operations are
specified by the endofunctor Σ0 defined as follows (recalling original notation on the right).
Σ0 (𝑋)v (𝑛) = 𝑛 + 𝑋p (𝑛 + 1) 𝑣 ::= 𝑥 | 𝜆𝑥.𝑒
Σ0 (𝑋)p (𝑛) = Σ0 (𝑋)v (𝑛) + 𝑋v (𝑛) + 𝑋p (𝑛)2 + 𝑋p (𝑛 + 1) + 𝑋p (𝑛) 𝑒 ::= 𝑣 | 𝑒1 𝑒2 | 𝒮𝑥.𝑒 | 〈𝑒〉
Σ0 (𝑋)c (𝑛) = 1 + 𝑋v (𝑛) × 𝑋c (𝑛) + 𝑋c (𝑛) × 𝑋p (𝑛) 𝐸 ::= � | 𝐸 𝑒 | 𝑣 𝐸

We then want to define the arity of additional operations, namely substitution, context
application, and context composition. Since these three additional operations are independent,
we may specify them at once by the bifunctor Γ : V̂T

2 → V̂T defined as follows.

10 A more general categorical framework for congruence of applicative bisimilarity

Γ(𝑋,𝑌)v (𝑛) =
∑
𝑚∈N 𝑋v (𝑚) × 𝑌v (𝑛)𝑚 𝑣 +F 𝑣 [𝜎]

Γ(𝑋,𝑌)p (𝑛) =
∑
𝑚∈N 𝑋p (𝑚) × 𝑌v (𝑛)𝑚 + 𝑋c (𝑛) × 𝑌p (𝑛) 𝑒 +F 𝑒[𝜎] | 𝐸 [𝑒]

Γ(𝑋,𝑌)c (𝑛) = 𝑋c (𝑛) × 𝑌c (𝑛) 𝐸 +F 𝐸 [𝐸 ′]
That the actual definition of additional operations induces a distributive law of Γ∗

𝑆
over Σ∗ is

harder to see, and will follow from the theory of syntactic signatures below (Example 33).

5.2 Algebraic transition systems
Let us now introduce algebraic transition systems.

I Definition 26. A 𝜎-transition system is an H-transition systems equipped with 𝜎-algebra
structure on its vertex object. A 𝜎-transition system morphism is a morphism of H-transition
systems whose vertex component is a 𝜎-algebra morphism. Let 𝜎 -Trans denote the category
of 𝜎-transition systems and morphisms between them.

I Proposition 27. The forgetful functor 𝒰 has a left adjoint, say ℒ : H -Trans→ 𝜎 -Trans.

Proof. The left adjoint maps any 𝜕 : 𝐸 → Δ(𝑉) to 𝐸 𝜕−→ Δ(𝑉)
Δ(𝜂𝑆𝑇

𝑉
)

−−−−−−→ Δ(𝑆(𝑇 (𝑉))). J

We conclude this section by defining the notion of congruence.

I Definition 28. For any 𝜎-transition system 𝐺 = (𝑉, 𝐸, 𝜕), a congruence is a span 𝑅 → 𝑉2

for which there exists a morphism Σ(𝑅) → 𝑅 making the first diagram of Figure 2 commute.

Σ(𝑅) 𝑅

Σ(𝑉2) Σ(𝑉)2 𝑉2

〈Σ(𝜋1) ,Σ(𝜋2) 〉

Γ(𝑅,𝑉) 𝑅

Γ(𝑉2, 𝑉) Γ(𝑉,𝑉)2 𝑉2

〈Γ(𝜋1 ,𝑉) ,Γ(𝜋2 ,𝑉) 〉

Figure 2 Congruence and enhancement

5.3 Enhanced bisimilarity
I Definition 29. For any 𝜎-algebra 𝑉 , a span 𝑝 : 𝑅 → 𝑉2 is enhanced when there exists a
morphism Γ(𝑅,𝑉) → 𝑅 making the second diagram of Figure 2 commute.

I Definition 30. For any 𝜎-transition system 𝐺, let Bisim𝜎 (𝐺) denote the full subcategory
of Bisim(𝐺) on enhanced spans. We call such spans enhanced bisimulations.

I Proposition 31. For any 𝜎-transition system 𝐺, Bisim𝜎 (𝐺) admits a terminal object,
which we call enhanced bisimilarity and denote by ∼𝜎

𝐺
.

Proof. Similar to Proposition 22, using left-cocontinuity of Γ. J

I Example 32. In the setting of Example 25, enhanced bisimilarity is applicative bisimilarity.

6 Signatures for operational semantics

6.1 Syntactic signatures for enhanced syntax
Syntactic signatures have already been introduced in Definition 2.

T. Hirschowitz and A. Lafont 11

I Example 33. Following up on Example 25, the syntax and additional operations of §3 may
be presented as an incremental structural law 𝑑𝑋,𝑌 : Γ𝑌 (Σ(𝑋)) → 𝑆(Γ𝑆 (𝑌) (𝑋) + 𝑋 +𝑌) (taking
𝑇1 = id) on V̂T, as follows. For context application, Equations (2)–(4) may be interpreted as
the component Σ(𝑋)c (𝑛) × 𝑌p (𝑛) → 𝑆(Γ𝑆 (𝑌) (𝑋) + 𝑋 + 𝑌)p (𝑛), namely we take them to mean

(𝑖𝑛1 (★), 𝑦) ↦→ 𝑖𝑛′3 (𝑦)
(𝑖𝑛2 (𝑣, 𝐸), 𝑦) ↦→ 𝜄(𝑖𝑛′2 (𝑣)) 𝑖𝑛′1 (𝐸, 𝑦)
(𝑖𝑛3 (𝐸, 𝑒), 𝑦) ↦→ 𝑖𝑛′1 (𝐸, 𝑦) 𝑖𝑛′2 (𝑒),

where 𝑖𝑛′
𝑖
= 𝜂𝑆 ◦ 𝑖𝑛𝑖. For context composition, we define the component at c (for any 𝑛), by

the exact same formulas, only with 𝑦 ∈ 𝑌c (𝑛). Substitution is defined similarly [11, 7, 18].

I Proposition 34. For any syntactic signature d = (Σ, (Γ𝑖 , 𝑑𝑖)𝑖∈𝑛) as in (1), the given
incremental structural laws induce distributive laws 𝛿𝑖 : 𝑇𝑖 ◦ 𝑆 → 𝑆 ◦ 𝑇𝑖, hence in particular
𝛿𝑛 : 𝑇𝑛 ◦ 𝑆 → 𝑆 ◦ 𝑇𝑛, and furthermore we have 𝑇𝑛 = (∑𝑖 Γ𝑖)∗𝑆. Thus, the triple 𝜎(d) =

(Σ,∑𝑖 Γ𝑖 , 𝛿𝑛) forms an enhanced syntax.

Proof. By [19, Theorem 4.2], each incremental structural law 𝑑𝑖 induces a distributive law
of (𝑇𝑖−1 ⊕ Γ∗

𝑆
) over 𝑆, i.e., of 𝑇𝑖 over 𝑆 by definition, using (𝐹 + 𝐺)∗ � 𝐹∗ ⊕ 𝐺∗. J

Let us conclude this subsection by giving an explicit description of the algebras of the
composite monad 𝑆𝑇𝑛 generated by a syntactic signature.

I Definition 35. Consider any syntactic signature d = (Σ, (Γ𝑖 , 𝑑𝑖)𝑖∈𝑛). For 𝑖 ∈ 𝑛, an
enhanced algebra is an object equipped with algebra structures 𝑎 : Σ𝑋 → 𝑋, 𝑏1 : Γ1 (𝑋, 𝑋) →
𝑋, ..., 𝑏𝑛 : Γ𝑛 (𝑋, 𝑋) → 𝑋 such that for all 𝑖 ∈ 𝑛 the following diagram commutes,

Γ𝑖 (Σ𝑋, 𝑋) 𝑆𝑇𝑖 (Γ𝑖 (𝑋, 𝑆𝑇𝑖𝑋) + 𝑋 + 𝑋) 𝑆𝑇𝑖 (Γ𝑖 (𝑋, 𝑋) + 𝑋) 𝑆𝑇𝑖𝑋

Γ𝑖 (𝑋, 𝑋) 𝑋

(𝑑𝑖)𝑋,𝑋
𝑆𝑇𝑖 (Γ𝑖 (𝑋,𝑎◦𝑆𝑎𝑖)+[𝑋,𝑋])

𝑆𝑇𝑖 [𝑏𝑖 ,𝑋]

Γ𝑖 (𝑎,𝑋)

𝑏𝑖

𝑎◦𝑆𝑎𝑖

where 𝑎𝑖 : 𝑇𝑖𝑋 → 𝑋 and 𝑎 : 𝑆𝑋 → 𝑋 denote the algebra structures induced by (𝑏 𝑗) 𝑗<𝑖, and 𝑎.
Let d - Alg denote the full subcategory of (Σ +∑

𝑖∈𝑛 Γ𝑖) - alg spanned by enhanced algebras.

I Proposition 36. Let d = (Σ, (Γ𝑖 , 𝑑𝑖)𝑖∈𝑛) denote any syntactic signature. The forgetful
functor 𝜎(d) - Alg→ (Σ +∑

𝑖∈𝑛 Γ𝑖) - alg lifts to d - Alg, and the lifting is an isomorphism. In
short, we have 𝜎(d) - Alg � d - Alg over Ĉ.

Proof. By induction on 𝑛 and [19, Theorem 4.13]. J

6.2 Dynamic signatures
Let us now introduce signatures for the dynamical part of an operational semantics. We
want a dynamic signature to be something like an endofunctor on 𝜎 -Trans, with built-in
structuralness. For this, we introduce a variant of H-transition systems called diplopic H-
transition systems, which feature an object of distinguished vertices, among which all sources
of transitions must lie. This will enable structuralness, by allowing sources of conclusions
of transition rules to have a distinguished head constructor. We fix an enhanced syntax
𝜎 = (Σ, Γ, 𝛿 : 𝑇𝑆 → 𝑆𝑇) for this subsection.

12 A more general categorical framework for congruence of applicative bisimilarity

I Definition 37. A diplopic H-transition system 𝐺 consists of a vertex object 𝑉𝐺 ∈ V̂T,
a distinguished vertex object 𝐷𝐺 ∈ V̂T, an edge object 𝐸𝐺 ∈ ÊT, together with morphisms
𝛾𝐺 : 𝐷𝐺 → 𝑉𝐺 and 𝜕𝐺 : 𝐸𝐺 → Δs (𝐷𝐺) × Δl,t (𝑉𝐺).

A diplopic 𝜎-transition system is a diplopic H-transition system 𝐺 equipped with
𝜎-algebra structure on 𝑉𝐺.

As before, we organise both notions into categories H -Trans2 = ÊT/Δ2 and 𝜎 -Trans2 =

H -Trans2 ×V̂ 𝜎 - Alg, where Δ2 denotes the composite V̂T
2 〈𝜋1 , 𝜋2 , 𝜋2 〉−−−−−−−−−→ V̂T

3 Δs×Δl×Δt−−−−−−−→ ÊT.

I Definition 38. A dynamic signature over 𝜎 is a functor Σ1 : 𝜎 -Trans→ 𝜎 -Trans2 such
that, for all 𝐺 ∈ 𝜎 -Trans, 𝑉Σ1 (𝐺) = 𝑉𝐺, 𝐷Σ1 (𝐺) = 𝑉𝐺 + Σ(𝑉𝐺), and 𝛾𝐺 : 𝑉𝐺 + Σ(𝑉𝐺) → 𝑉𝐺 is
the canonical morphism (and similarly on morphisms).

I Example 39. Letting d denote the syntactic signature of Example 33. The transition
rules of §3 define a dynamic signature Σ1 : 𝜎(d) -Trans → 𝜎(d) -Trans2. Its behaviour on
the underlying 𝜎(d)-algebra is fixed, so we merely need to define it on transitions. For any
𝐺 = (𝐷,𝑉, 𝐸, 𝜕) ∈ 𝜎(d) -Trans and 𝛼 ∈ ET, we define Σ1 (𝐺) (𝛼) to be a coproduct over all
rules 𝜌 producing a transition of type 𝛼, of a set describing the premises of 𝜌. One non-trivial
rule is (SA), whose set of premises is 𝐸 [c] ×𝑉 (0c) (𝑉 (0c) × 𝑉 (0v)). Concretely, it is the set
of tuples (𝑟, (𝐸, 𝑣)), where 𝑟 is a transition 𝑒1

𝐸′−−→ 𝑒2, and the pullback condition imposes

𝐸 ′ = 𝐸 [𝑣 �]. (We take the pullback of 𝐸 [c] 𝜋2𝜕−−−→ 𝑉 (0c)
𝐸 [𝑣 �] 𝐸,𝑣
←−−−−−−−−−−−−− 𝑉 (0c) × 𝑉 (0v).) We

define the source of (𝑟, (𝐸, 𝑣)) to be 𝑖𝑛2 (𝑖𝑛2 (𝜄(𝑣), 𝑒1)) ∈ 𝑉p (0) + Σ0 (𝑉)p (0), (i.e., recalling Σ0
from Example 25, the formal application 𝜄(𝑣) 𝑒1,) its label to be 𝐸 , and its target to be 𝑒2.

Returning to the abstract setting, let us now define the category of models of a dynamic
signature Σ1. For this, we need to build an endofunctor out of Σ1, hence a link between
𝜎 -Trans and 𝜎 -Trans2.

I Definition 40. Let 𝜄 -Trans : 𝜎 -Trans → 𝜎 -Trans2 map any 𝐸 → Δ(𝑉) to itself (with
underlying arrow 𝑉 → 𝑉).

I Proposition 41. The functor 𝜄 -Trans : 𝜎 -Trans→ 𝜎 -Trans2 is a (full) reflective embedding.
The left adjoint, say 𝜌 -Trans : 𝜎 -Trans2 → 𝜎 -Trans maps any 𝐸 → Δs (𝐷) × Δl,t (𝑉) to the
composite 𝐸 → Δs (𝐷) × Δl,t (𝑉) → Δ(𝑉).

I Definition 42. For any Σ1, let Σ̌1 be the composite 𝜎 -Trans Σ1−−→ 𝜎 -Trans2
𝜌 -Trans
−−−−−−→ 𝜎 -Trans.

Models of Σ1 will almost be Σ̌1-algebras. The problem is that a Σ̌1-algebra structure includes
in particular algebra structure for the action of Σ̌1 on the underlying 𝜎-algebra, i.e., algebra
structure 𝑉 → 𝑉 for the identity endofunctor on 𝜎-algebras. This structure is not relevant
for our purposes, so we require it to be the canonical candidate, i.e., the identity on 𝑉 .

I Definition 43. A Σ̌1-algebra structure Σ̌1 (𝐺) → 𝐺 is vertical when its image under
the forgetful functor 𝜎 -Trans → 𝜎 - Alg is the identity. A Σ̌1-algebra is called vertical
accordingly. Let Σ̌1 - alg𝑣 denote the full subcategory of Σ̌1 - alg spanning all vertical algebras.

I Theorem 44. The forgetful functor Σ̌1 - alg𝑣 → 𝜎 -Trans is monadic, and the initial Σ̌1-
algebra, say ZΣ1 , or Z for short when Σ1 is clear from context, may be chosen to be vertical,
hence in particular to also be initial in Σ̌1 - alg𝑣 . (In this case, 𝑉Z is an initial 𝜎-algebra.)

Proof. Same as [18, Theorem 5.18 and Proposition 5.19]. J

I Example 45. For Σ1 as in Example 39, Z is the syntactic transition system of §3.

T. Hirschowitz and A. Lafont 13

Let us now collect the static and dynamic part of signatures and their models.

I Definition 46. An operational signature consists of a syntactic signature d, together with
a dynamic signature Σ1 : 𝜎(d) -Trans → 𝜎(d) -Trans2 over the generated enhanced syntax
𝜎(d) (Proposition 34). The category of (d,Σ1)-algebras is Σ̌1 - alg𝑣 .

By definition, we have:

I Proposition 47. The initial vertical Σ̌1-algebra is an initial (d,Σ1)-algebra.

6.3 Congruence of enhanced bisimilarity
In this subsection, we state our main congruence result. For this, we need to make an
important hypothesis involving so-called functional flexible bisimulations. These are like a
functional version of bisimulations, where labels are required to be related instead of identical,
much as in Sangiorgi’s BA-bisimulation [29], which we need to define both for algebraic
transition systems and their diplopic variant. The hypothesis will then require that the
considered dynamic signature Σ1 preserve functional flexible bisimulations. We again fix a
Howe context H = (VT,ET, s, t, l) and an enhanced syntax 𝜎 over it.

I Definition 48. A morphism 𝑓 : 𝑅 → 𝑋 in H -Trans2 is a functional flexible bisim-
ulation iff for any 𝛼 ∈ ET, 𝑟 ∈ 𝐷𝑅 (s(𝛼)), (𝑟1, . . . , 𝑟𝑛𝛼) ∈ Δl (𝑉𝑅) (𝛼), and transition

𝑒′ : 𝑓𝐷 (𝑟)
𝛼(𝑓𝑉 (𝑟1) ,..., 𝑓𝑉 (𝑟𝑛𝛼))−−−−−−−−−−−−−−−−−−→ 𝑥 ′ there exists 𝑒 : 𝑟

𝛼(𝑟1 ,...,𝑟𝑛𝛼)−−−−−−−−−−→ 𝑟 ′ such that 𝑓𝐸 (𝑒) = 𝑒′.
A morphism in 𝜎 -Trans2 is a functional flexible bisimulation iff the underlying morphism

in H -Trans2 is. A morphism in 𝜎 -Trans is a functional flexible bisimulation iff its embedding
into 𝜎 -Trans2 (by 𝜄 -Trans) is. In any of these categories 𝒞, let FFBisim(𝒞) denote the class
of all functional flexible bisimulations.

I Definition 49. A dynamic signature Σ1 : 𝜎 -Trans → 𝜎 -Trans2 preserves functional
flexible bisimulations iff for all morphisms 𝑓 in 𝜎 -Trans, if 𝑓 is a functional flexible
bisimulations, then so is Σ1 (𝑓).

Let us introduce a last hypothesis before stating the main result:

I Definition 50. A functor is algebraic iff it is finitary and preserves wide pullbacks and
reflexive coequalisers. A syntactic signature (Σ, Γ, 𝛿) is algebraic if the endofunctor Σ is.

I Remark 51. Algebraicity is straightforward to verify in all our applications.

I Theorem 52. For any operational signature (d,Σ1), if d is algebraic and Σ1 preserves
functional flexible bisimulations, then enhanced bisimilarity on the initial vertical Σ̌1-algebra
is a congruence.

Proof. See Appendix A. J

6.4 Preservation of functional flexible bisimulations
In this section, we exhibit a sufficient condition for a dynamic signature to preserve functional
flexible bisimulations, slightly generalising [18, §7]. Fixing a Howe context H = (VT,ET, s, t, l)
and an enhanced syntax 𝜎 = (Σ0, Γ, 𝛿 : 𝑇𝑆 → 𝑆𝑇) on V̂T, we first characterise H -Trans
and H -Trans2 as presheaf categories, which allows us to characterise functional flexible
bisimulations as the right class of a weak factorisation system [20, 28] – we call the left class
cofibrations. We then recall familial functors, and define the notion of rule of a dynamic

14 A more general categorical framework for congruence of applicative bisimilarity

signature Σ1, and the border arity of any rule. We finally show that a familial Σ1 preserves
functional flexible bisimulations iff the border arities of all rules are cofibrations.

Let us characterise transitions systems as presheaves, recalling Definition 12:

I Proposition 53. We have H -Trans ' �VT[ET]ys+l+yt , where ys + l + yt : ET→ V̂T.

Proof. The functor ΔH is the nerve of ys + l + yt, so we conclude by [8, Lemma 4.9]. J

Doing the same for H -Trans2 leads to considering the functor ET→ V̂T
2

mapping any
𝛼 to the arrow ys(𝛼) → ys(𝛼) + l(𝛼) + yt(𝛼) . But for [8, Lemma 4.9] to apply, we need the
codomain of this functor to be a presheaf category. This is in fact the case up to equivalence:

I Lemma 54. We have V̂T
2 ' �VT[VT]y, where y : VT→ V̂T.

I Notation 4. For each state type 𝑏 ∈ VT, the category VT[VT] has an object 𝑏𝑉 corresponding
to the vertex object, an object 𝑏𝐷 for the distinguished vertex object, and a morphism
𝑏𝑉 → 𝑏𝐷.

Gluing along the obtained functor 𝛼 ↦→ ys(𝛼)𝐷 +
∑
𝑖∈𝑛𝛼 y(l𝛼

𝑖
)𝑉 + yt(𝛼)𝑉 , we obtain:

I Proposition 55. We have H -Trans2 ' �VT[VT] [ET].

Let us now characterise functional flexible bisimulations by a lifting property.

I Definition 56. In a category 𝒞, given a class J of morphisms, let Jt consist of morphisms
𝑓 : 𝑋 → 𝑌 such that for any 𝑗 : 𝐴→ 𝐵 in J, any (𝑢, 𝑣) : 𝑗 → 𝑓 in 𝒞

2 admits a lifting, i.e.,
a morphism 𝑘 : 𝐵 → 𝑋 such that 𝑘 ◦ 𝑗 = 𝑢 and 𝑓 ◦ 𝑘 = 𝑣. Let tJ consist of all 𝑓 such that
any (𝑢, 𝑣) : 𝑓 → 𝑗 in 𝒞

2 admits a lifting. A J-cofibration is an element of t (Jt).

I Proposition 57. For any J,J-cofibrations are closed under cobase change and composition.

For any 𝛼 ∈ ET, the element (𝑖𝑛1 (ids(𝛼))) ∈ (ys + l + yt) (𝛼) (s(𝛼)), corresponds to a
morphism 𝑠𝛼 : s(𝛼) → 𝛼 in VT[ET], and similarly we get morphisms 𝑙𝛼

𝑖
: l𝛼
𝑖
→ 𝛼 for all 𝑖 ∈ 𝑛𝛼.

I Definition 58. Let J𝜎 denote the set of all maps ℒ′(𝑗𝛼) in 𝜎 -Trans, where ℒ
′ : �VT[ET] →

𝜎 -Trans is left adjoint to the forgetful functor, and 𝑗𝛼 : ys(𝛼) +
∑
𝑖∈𝑛𝛼 yl𝛼

𝑖
→ y𝛼 denotes the

cotupling [y𝑠𝛼 , [y𝑙𝛼𝑖]𝑖∈𝑛𝛼], for all 𝛼.
Let J2,𝜎 denote the set of all maps ℒ

′
2 (𝑗2,𝛼) in 𝜎 -Trans2, where ℒ

′
2 : �VT[VT] [ET] →

𝜎 -Trans2 is left adjoint to the forgetful functor, say 𝒰
′
2, and 𝑗2,𝛼 : ys(𝛼)𝐷 +

∑
𝑖∈𝑛𝛼 y(l𝛼

𝑖
)𝑉 → y𝛼

denotes the analogous cotupling [y𝑠2,𝛼 , [y𝑙2,𝛼
𝑖
]𝑖∈𝑛𝛼], for all 𝛼.

I Proposition 59. We have FFBisim(𝜎 -Trans) = J𝜎t and FFBisim(𝜎 -Trans2) = J2,𝜎
t.

Let us now introduce border arities. A functor 𝐹 : 𝒞 → D̂ to some presheaf category is
familial iff there exists a functor 𝐸 : el(𝐹 (1)) → 𝒞 from the category of elements [25,
§I.5] of 𝐹 (1), called the exponent of 𝐹, such that, we have a natural isomorphism

𝐹 (𝐶) (𝑑) �
∑︁

𝑜∈𝐹 (1) (𝑑)
𝒞(𝐸 (𝑑, 𝑜), 𝐶).

Intuitively, elements 𝑜 ∈ 𝐹 (1) (𝑑) are operations of output arity 𝑑, and 𝐸 (𝑑, 𝑜) gives their
input arity. Morphisms 𝑢 : 𝑑 → 𝑑 ′ of D act on 𝐹 (𝐶) by precomposition: for any 𝑜′ ∈ 𝐹 (1) (𝑑 ′),
we have a morphism (𝑑, 𝑜) 𝑢�𝑜

′
−−−→ (𝑑 ′, 𝑜′) in el(𝐹 (1)), where 𝑜 = 𝐹 (1) (𝑢) (𝑜′) – which we write

𝑜 = 𝑜′ · 𝑢; and the map 𝐹 (𝐶) (𝑢) : 𝐹 (𝐶) (𝑑 ′) → 𝐹 (𝐶) (𝑑) sends any (𝑜′, 𝜑 : 𝐸 (𝑑 ′, 𝑜′) → 𝐶) to
(𝑜, 𝐸 (𝑑, 𝑜) 𝑢�𝑜

′
−−−→ 𝐸 (𝑑 ′, 𝑜′)

𝜑
−→ 𝐶). This is the basis for defining border arities.

T. Hirschowitz and A. Lafont 15

I Definition 60. Consider a dynamic signature Σ1 such that the composite 𝜎 -Trans Σ1−−→
𝜎 -Trans2

𝒰
′
2−−→ �VT[VT] [ET] is familial with exponent 𝐸. Let us fix 𝛼 ∈ ET and 𝑟 ∈ 𝒰′2Σ1 (1) (𝛼).

For any 𝑘 : 𝐴𝑘 → 𝛼 among 𝐼𝛼 := {𝑠2,𝛼, 𝑙2,𝛼1 , . . . , 𝑙
2,𝛼
𝑛𝛼 }, we have 𝐸 (𝑘 � 𝑟) : 𝐸 (𝐴𝑘 , 𝑟 · 𝑘) →

𝐸 (𝛼, 𝑟). The border arity b𝑟 of 𝑟 is the cotupling [𝐸 (𝑘 � 𝑟)]𝑘∈𝐼𝛼 :
∑
𝑘∈𝐼𝛼 𝐸 (𝐴, 𝑟 ·𝑘) → 𝐸 (𝛼, 𝑟).

I Theorem 61. For any dynamic signature Σ1 : 𝜎 -Trans → 𝜎 -Trans2 such that 𝒰
′
2Σ1 is

familial, Σ1 preserves functional flexible bisimulations iff all border arities are J𝜎-cofibrations.

Proof sketch for “if”, see §B. Consider any (𝑢, 𝑣) : ℒ′2 (𝑗2,𝛼) → Σ1 (𝑓), with 𝑓 : 𝐴 → 𝐵 in
FFBisim(𝜎 -Trans). By adjunction, we get (𝑢, 𝑣) : 𝑗2,𝛼 → 𝒰

′
2 (Σ1 (𝑓)). Letting 𝑟 be the

composite y𝛼
𝑣−→ 𝒰

′
2 (Σ1 (𝐵))

𝒰
′
2 (Σ1 (!))−−−−−−−−→ 𝒰

′
2 (Σ1 (1)), we use familiality to factor (𝑢, 𝑣) as the

solid part below. The result follows from finding 𝑘 as shown, by b𝑟 ∈ t (J𝜎t) and 𝑓 ∈ J𝜎t.

ys(𝛼)𝐷 +
∑
𝑖∈𝑛𝛼 y(l𝛼

𝑖
)𝑉 𝒰

′
2 (Σ1 (

∑
𝑘∈𝐼𝛼 𝐸 (𝐴𝑘 , 𝑟 · 𝑘))) 𝒰

′
2 (Σ1 (𝐴))

y𝛼 𝒰
′
2 (Σ1 (𝐸 (𝛼, 𝑟))) 𝒰

′
2 (Σ1 (𝐵))

[𝒰′2 (Σ1 (𝑖𝑛𝑘))◦(𝑟 ·𝑘,id)]𝑘∈𝐼𝛼𝑗2,𝛼

(𝑟 ,id)

𝒰
′
2 (Σ1 (𝑘))

𝒰
′
2 (Σ1 (b𝑟))

𝒰
′
2 (Σ1 (𝜓))

𝒰
′
2 (Σ1 (𝜑))

𝒰
′
2 (Σ1 (𝑓))

J

I Example 62. Let us now sketch a proof of Theorem 7. By Theorems 52 and 61 and Pro-
position 57, it suffices to reconstruct the border arity of each rule. We only treat rule (SA)
for lack of space: its border arity is the bottom morphism in

ℒ(0p + 0c) ℒ[c]

ℒ(0v + 0p + 0c) 𝐴,

ℒ [𝑠[c] ,𝑙[c]]

(𝑒1 ,𝐸 [𝑣 �])

with hopefully clear notation.

I Example 63. This also works for PCF as in [17], which we omit for lack of space.

7 Conclusion and perspectives

We have introduced a categorical framework for applicative bisimilarity in the presence of
operations on terms other than substitution, and of terms as labels. We have furthermore
provided a notion of signature for generating instances of this framework, and proved
that under suitable hypotheses, notably preservation of functional flexible bisimulations,
applicative bisimilarity in the generated instance is a congruence. We have finally exhibited
a more concrete sufficient condition in terms of border arities being cofibrations, which has
allowed us to recover congruence of applicative bisimilarity for 𝜆-calculus with delimited
control operators and PCF.

For future work, we would be interested in further generalising the framework to cover
a kind of adaptation of Howe’s method that still eludes our abstraction efforts, namely
(early-style) higher-order process calculi [23].

References
1 J. Adámek and J. Rosicky. Locally Presentable and Accessible Categories. Cambridge University

Press, 1994. doi:10.1017/CBO9780511600579.
2 J. Adámek, J. Rosický, and E. M. Vitale. Algebraic Theories: A Categorical Introduction

to General Algebra. Cambridge Tracts in Mathematics. Cambridge University Press, 2010.
doi:10.1017/CBO9780511760754.

https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/CBO9780511760754

16 A more general categorical framework for congruence of applicative bisimilarity

3 Jon M. Beck. Distributive laws. In Beno Eckmann and Myles Tierney, editors, Seminar
on Triples and Categorical Homology Theory, volume 80 of Lecture Notes in Mathematics.
Springer, 1969.

4 Karen L. Bernstein. A congruence theorem for structured operational semantics of higher-order
languages. In Proc. 13th Symposium on Logic in Computer Science, pages 153–164. IEEE,
1998. doi:10.1109/LICS.1998.705652.

5 Dariusz Biernacki and Sergueï Lenglet. Applicative bisimulations for delimited-control operat-
ors. In Lars Birkedal, editor, Proc. 15th Foundations of Software Science and Computational
Structures, volume 7213 of Lecture Notes in Computer Science, pages 119–134. Springer, 2012.
doi:10.1007/978-3-642-28729-9_8.

6 B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal of the ACM,
42:232–268, 1995. doi:10.1145/200836.200876.

7 Peio Borthelle, Tom Hirschowitz, and Ambroise Lafont. A cellular Howe theorem. In Holger
Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, Proc. 35th ACM/IEEE
Symposium on Logic in Computer Science. ACM, 2020. doi:10.1145/3373718.3394738.

8 Aurelio Carboni and Peter Johnstone. Connected limits, familial representability and Artin
glueing. Mathematical Structures in Computer Science, 5(4):441–459, 1995. doi:10.1017/
S0960129500001183.

9 Olivier Danvy and Andrzej Filinski. Abstracting control. In Gilles Kahn, editor, Proc.
ACM Conference on LISP and Functional Programming (LFP), pages 151–160. ACM, 1990.
doi:10.1145/91556.91622.

10 Yves Diers. Spectres et localisations relatifs à un foncteur. Comptes rendus hebdomadaires des
séances de l’Académie des sciences, 287(15):985–988, 1978.

11 Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable binding. In Proc.
14th Symposium on Logic in Computer Science. IEEE, 1999. doi:10.1109/LICS.1999.782615.

12 Marcelo Fiore and Daniele Turi. Semantics of name and value passing. In Proc. 16th Symposium
on Logic in Computer Science, pages 93–104. IEEE, 2001. doi:10.1109/LICS.2001.932486.

13 Marcelo P. Fiore. Second-order and dependently-sorted abstract syntax. In Proc. 23rd
Symposium on Logic in Computer Science, pages 57–68. IEEE, 2008. doi:10.1109/LICS.2008.
38.

14 Richard H. G. Garner and Tom Hirschowitz. Shapely monads and analytic functors. Journal
of Logic and Computation, 28(1):33–83, 2018. doi:10.1093/logcom/exx029.

15 Joseph A Goguen and James W Thatcher. Initial algebra semantics. In 15th Annual Symposium
on Switching and Automata Theory (SWAT), pages 63–77. IEEE, 1974.

16 Sergey Goncharov, Stefan Milius, Lutz Schröder, Stelios Tsampas, and Henning Urbat. Towards
a higher-order mathematical operational semantics. Proceedings of the ACM on Programming
Languages, 7(POPL), jan 2023. doi:10.1145/3571215.

17 Andrew D. Gordon. Bisimilarity as a theory of functional programming. Theoretical Computer
Science, 228(1-2):5–47, 1999. doi:10.1016/S0304-3975(98)00353-3.

18 Tom Hirschowitz and Ambroise Lafont. A categorical framework for congruence of applicative
bisimilarity in higher-order languages. Logical Methods in Computer Science, 18(3), 2022.
URL: https://lmcs.episciences.org/10066, doi:10.46298/lmcs-18(3:37)2022.

19 Tom Hirschowitz and Ambroise Lafont. A unified treatment of structural definitions on
syntax for capture-avoiding substitution, context application, named substitution, partial
differentiation, and so on. 2022. URL: https://hal.archives-ouvertes.fr/hal-03633933.

20 Mark Hovey. Model Categories, volume 63 of Mathematical Surveys and Monographs, Volume
63, AMS (1999). American Mathematical Society, 1999. doi:10.1090/surv/063.

21 Douglas J. Howe. Proving congruence of bisimulation in functional programming languages.
Information and Computation, 124(2):103–112, 1996. doi:10.1006/inco.1996.0008.

22 André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation and open maps. In Proc. 8th
Symposium on Logic in Computer Science, pages 418–427. IEEE, 1993. doi:10.1109/LICS.
1993.287566.

https://doi.org/10.1109/LICS.1998.705652
https://doi.org/10.1007/978-3-642-28729-9_8
https://doi.org/10.1145/200836.200876
https://doi.org/10.1145/3373718.3394738
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1145/91556.91622
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.2001.932486
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1093/logcom/exx029
https://doi.org/10.1145/3571215
https://doi.org/10.1016/S0304-3975(98)00353-3
https://lmcs.episciences.org/10066
https://doi.org/10.46298/lmcs-18(3:37)2022
https://hal.archives-ouvertes.fr/hal-03633933
https://doi.org/10.1090/surv/063
https://doi.org/10.1006/inco.1996.0008
https://doi.org/10.1109/LICS.1993.287566
https://doi.org/10.1109/LICS.1993.287566

T. Hirschowitz and A. Lafont 17

23 Sergueï Lenglet and Alan Schmitt. Howe’s method for contextual semantics. In Luca Aceto and
David de Frutos-Escrig, editors, Proc. 26th International Conference on Concurrency Theory,
volume 42 of Leibniz International Proceedings in Informatics (LIPIcs), pages 212–225. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.212.

24 Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts
in Mathematics. Springer, 2nd edition, 1998. doi:10.1007/978-1-4757-4721-8.

25 Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Introduction
to Topos Theory. Universitext. Springer, 1992. doi:10.1007/978-1-4612-0927-0.

26 Gordon D. Plotkin. A structural approach to operational semantics. DAIMI Report FN-19,
Computer Science Department, Aarhus University, 1981.

27 Jan Reiterman. A left adjoint construction related to free triples. Journal of Pure and Applied
Algebra, 10:57–71, 1977. doi:10.1016/0022-4049(77)90028-7.

28 Emily Riehl. Categorical Homotopy Theory. Number 24 in New Mathematical Monographs.
Cambridge University Press, 2014.

29 Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Logical bisimulations and functional
languages. In Farhad Arbab and Marjan Sirjani, editors, Proc. International Symposium on
Fundamentals of Software Engineering (FSEN), volume 4767 of Lecture Notes in Computer
Science, pages 364–379. Springer, 2007. doi:10.1007/978-3-540-75698-9_24.

30 Davide Sangiorgi and David Walker. The 𝜋-calculus – A Theory of Mobile Processes. Cambridge
University Press, 2001.

31 Sam Staton. General structural operational semantics through categorical logic. In Proc. 23rd
Symposium on Logic in Computer Science, pages 166–177, 2008. doi:10.1109/LICS.2008.43.

32 Daniele Turi and Gordon Plotkin. Towards a mathematical operational semantics. In
Proc. 12th Symposium on Logic in Computer Science, pages 280–291. IEEE, 1997. doi:
10.1109/LICS.1997.614955.

33 Mark Weber. Symmetric Operads for Globular Sets. PhD thesis, Macquarie University, 2001.

https://doi.org/10.4230/LIPIcs.CONCUR.2015.212
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1016/0022-4049(77)90028-7
https://doi.org/10.1007/978-3-540-75698-9_24
https://doi.org/10.1109/LICS.2008.43
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS.1997.614955

18 A more general categorical framework for congruence of applicative bisimilarity

A Proof of Theorem 52

We assume given a Howe context H = (VT,ET, s, t, l). To ease readability, we introduce some
notations.

I Notation 5. For any 𝐺 = (𝐷,𝑉, 𝐸, 𝛾, 𝜕) ∈ H -Trans2, we let 𝐺𝐷,𝑉 denote the underlying
triple (𝐷,𝑉, 𝛾 : 𝐷 → 𝑉) ∈ V̂T

2
, 𝐺0 denote 𝑉 , 𝐺1 denote 𝐸, and 𝐺𝑠 denote 𝐷. Furthermore,

following Notation 2, we denote, e.g., by Δ2,s,l the functor mapping any 𝛾 : 𝐷 → 𝑉 to
Δs (𝐷) ×Δl (𝑉). Finally, we sometimes treat the projection 𝐺 ↦→ 𝐺𝐷,𝑉 as an implicit coercion.
E.g., we write Δ2,s,l (𝐺) for Δs (𝐷) × Δl (𝑉).

A.1 Basic properties of flexible bisimulation
In this section, we establish basic properties of flexible bisimulations.

I Proposition 64. The functor Δl is a right adjoint, hence in particular it preserves all
limits.

Proof. The functor Δl is the nerve functor of l. It is right adjoint to the left Kan extension
of l along the Yoneda embedding, as in the following diagram.

ET ÊT

V̂T

l

y

l̄

Δl

a

J

Regarding preservation of colimits, the fact that any l(𝑐) is a finite coproduct of representables
entails:

I Proposition 65. The functor Δl is algebraic, and preserves epimorphisms.

Proof. Just for making the proof slicker, we rely on the well-known facts [2] that in presheaf
categories preserving filtered colimits and reflexive coequalisers is equivalent to preserving
sifted colimits. Furthermore, just as the covariant hom of any finitely presentable object
preserves filtered colimits, in a presheaf category the covariant hom of any finite coproduct
of representable objects preserves sifted colimits, hence epimorphisms. The latter fact deals
with the second statement.

For the first, for any sifted colimit colim𝑖 𝑋𝑖 and 𝑐 ∈ Ĉ:

Δl (colim𝑖 𝑋𝑖) (𝑐) = V̂T(l(𝑐), colim𝑖 𝑋𝑖)
= colim𝑖 V̂T(l(𝑐), 𝑋𝑖) (l(𝑐) a finite coproduct of representables)
= colim𝑖 Δl (𝑋𝑖) (𝑐). J

I Proposition 66. All functors Δ,Δl,Δs,Δt,Δs,l, . . . are algebraic right adjoints (and preserve
epimorphisms).

Proof. Let us first deal with algebraicity. Because algebraic functors are closed under
pointwise products, it suffices to deal with each of Δl, Δs, and Δt in isolation: Δs and Δt
are, as restriction functors; Δl is by Proposition 65. Finally, in presheaf categories, being
algebraic entails preservation of epimorphisms.

T. Hirschowitz and A. Lafont 19

For right adjointness, as right adjoints are closed under pointwise products (under
(co)completeness conditions satisfied here), it suffices to show that each of Δl, Δs, and Δt is a
right adjoint. Again, Δs and Δt are, as restriction functors; and Δl is by Proposition 64. J

I Proposition 67. All functors Δ2,Δ2,l,Δ2,s,Δ2,t,Δ2,s,l, . . . are algebraic right adjoints and
preserve epimorphisms.

Proof. Algebraic functors between presheaf categories automatically preserve epimorphisms,
so it suffices to prove that all these functors are algebraic right adjoints.

Algebraic right adjoints being closed under pointwise finite products, it further suffices to
prove that each of Δ2,l, Δ2,s, and Δ2,t is an algebraic right adjoint. Now each of these functors
Δ2,𝑥 is the corresponding functor Δ𝑥 , precomposed with one of the projections V̂T

2 → V̂T.
But each Δ𝑥 is an algebraic right adjoint by Proposition 66, and projections, being restriction
functors, are left and right adjoints, hence algebraic right adjoints, hence the result. J

I Lemma 68. In any presheaf category, for any commuting diagram of the form

𝐴 𝐴′ 𝐵

𝐶 ′ 𝐶 𝐷

if the exterior rectangle is a pointwise weak pullback and the marked morphism is epi, then
so is the right-hand square.

Proof. Straightforward, using the fact that any morphism y𝑐 → 𝐶 from some representable
presheaf lifts to 𝐶 ′ because epis are pointwise in presheaf categories. J

I Proposition 69. A morphism 𝑅 → 𝑋 of diplopic H-transition systems is a functional
flexible bisimulation iff the following square is a pointwise weak pullback.

𝑅1 𝑋1

Δs (𝑅𝑠) × Δl (𝑅0) Δs (𝑋𝑠) × Δl (𝑋0)

I Lemma 70. For any morphisms 𝑅
𝑓
−→ 𝑆

𝑔
−→ 𝑋 in H -Trans2 such that 𝑓𝐷,𝑉 : 𝑅𝐷,𝑉 → 𝑆𝐷,𝑉

is an epi, if 𝑔 𝑓 is a functional flexible bisimulation, then so is 𝑔.

Proof. We have a diagram

𝑅1 𝑆1 𝑋1

Δ2,s,l𝑅𝐷,𝑉 Δ2,s,l𝑆𝐷,𝑉 Δ2,s,l𝑋𝐷,𝑉 ,

and want to prove that the right-hand square is a pointwise weak pullback, knowing that the
outer rectangle is one: this follows readily by Lemma 68 and Proposition 67. J

I Corollary 71. For any 𝑋 ∈ H -Trans2 and span morphism 𝑓 : 𝑅 → 𝑆 in H -Trans2/𝑋2 such
that 𝑓𝐷,𝑉 is an epi, if 𝑅 is a (bi)simulation, then so is 𝑆.

I Proposition 72. The projection functors H -Trans → V̂T and H -Trans2 → V̂T
2

are
Grothendieck fibrations.

20 A more general categorical framework for congruence of applicative bisimilarity

Proof. This follows readily from the next lemma. J

I Lemma 73. For any functor 𝐹 : A→ B to some category B with pullbacks, the projection
functor 𝑝 : B/𝐹 → A, mapping any object 𝑏 → 𝐹𝑎 to 𝑎, is a Grothendieck fibration.

Proof. Given any object 𝑥 : 𝑏 → 𝐹𝑎 and morphism 𝑓 : 𝑎′→ 𝑎, a cartesian lifting is given by
the following pullback,

𝑏 |𝑎′ 𝑏

𝐹𝑎′ 𝐹𝑎

𝑥� 𝑓

𝑥| 𝑓

𝐹 𝑓

𝑥

cartesianness being ensured by universal property of pullback. J

I Definition 74. A span 𝑅 → 𝑋 × 𝑌 of diplopic H-transition systems (resp. diplopic 𝜎-
transition systems for any enhanced syntax 𝜎) is a flexible simulation if its left-hand leg
𝑅 → 𝑋 is a functional flexible bisimulation, and a flexible bisimulation when both of its
legs are.

By convention, for any 𝑅 ∈ V̂T
2

and 𝑋 ∈ H -Trans2, a span 𝑅 → 𝑋2
𝐷,𝑉

is a flexible
bisimulation when the cartesian lifting 𝑅⇑ → 𝑋2 (in the sense of Proposition 72) of 𝑋 along
𝑅 → 𝑋2

𝐷,𝑉
is.

I Proposition 75. If a span 𝑅 → 𝑋2 is a flexible (bi)simulation, then so is the cartesian
lifting 𝑅⇑

𝐷,𝑉
→ 𝑋2.

Proof. By Corollary 71 applied to the span morphism 𝑅 → 𝑅
⇑
𝐷,𝑉

. J

I Lemma 76. Consider any pullback-preserving functor 𝐹 : A→ B between categories with
pullbacks and (strong epi-mono) factorisations. Then:

(i) A morphism (𝑓 , 𝑔) in B/𝐹 is monic iff both 𝑓 and 𝑔 are.
(ii) A morphism (𝑓 , 𝑔) in B/𝐹 is a strong epi iff both 𝑓 and 𝑔 are.
(iii) The forgetful functor B/𝐹 → B ×A creates, hence preserves, (strong epi-mono) factor-

isations.

Proof. First of all, the forgetful functor creates all colimits, and all limits that 𝐹 preserves,
hence in particular pullbacks. Furthermore, in any category C, a morphism 𝑓 : 𝑋 → 𝑌 is
monic iff its self square

𝑋 𝑋

𝑋 𝑌
𝑓

𝑓

is a pullback. Thus, a morphism (𝑓 , 𝑔) in B/𝐹 is mono iff its self square is a pullback, iff the
self squares of 𝑓 and 𝑔 are both pullbacks, iff 𝑓 and 𝑔 are both monic. This settles (i).

We next deal with the ‘if’ part of (ii), consider any diagram like the solid part in

T. Hirschowitz and A. Lafont 21

𝑏 𝑑

𝑏′ 𝑑 ′

𝐹𝑎 𝐹𝑐

𝐹𝑎′ 𝐹𝑐′,

𝑥

𝑒

𝐹𝑟

𝑓

𝑦

𝐹𝑔

𝑚

𝑦′

𝐹 𝑗

𝐹𝑠

𝑘

𝐹𝑙𝑥′

ℎ

where 𝑒 and 𝑟 are strong epis and 𝑚 and 𝑠 are monos. By orthogonality, we find unique
liftings 𝑘 and 𝑙 making all four triangles commute (without 𝐹 on the bottom face). It remains
to show that the vertical, diagonal square commutes: this follows by orthogonality using the
fact that 𝐹𝑠 is monic (because 𝐹 preserves pullbacks, hence monos).

For (iii), consider any objects 𝑥 : 𝑏 → 𝐹𝑎 and 𝑥 ′ : 𝑏′ → 𝐹𝑎′, and let 𝑓 : 𝑏 → 𝑏′ and
𝑔 : 𝑎 → 𝑎′ make the following diagram commute.

𝑏 𝑏′

𝐹𝑎 𝐹𝑎′

𝑓

𝑥

𝐹𝑔

𝑥′

Let now 𝑏
𝑒

𝑏′′ 𝑚
𝑏′ and 𝑎 𝑟

𝑎′′ 𝑠
𝑎′ be (strong epi-mono) factorisations of 𝑓 and 𝑔,

respectively. Because 𝐹 preserves monos, 𝐹𝑠 is a mono, hence by orthogonality we find a
unique lifting making both squares commute in

𝑏 𝑏′′ 𝑏′

𝐹𝑎 𝐹𝑎′′ 𝐹𝑎′.

𝑒

𝑥

𝐹𝑟

𝑥′′

𝑚

𝐹𝑠

𝑥′

Furthermore, by (i) and (ii), this lifting is in fact a (strong epi-mono) factorisation of (𝑓 , 𝑔),
as desired. Preservation follows from (strong epi-mono) factorisations being unique up to
unique isomorphism and existing in B ×A by hypothesis.

Finally, for the ‘only if’ part of (ii): a morphism is a strong epi iff the monic part of its
(strong epi-mono) factorisation is an isomorphism. So given a strong epi (𝑒, 𝑟) in B/𝐹, we
compute its (strong epi-mono) factorisations 𝑚 ◦ 𝑒′ and 𝑠 ◦ 𝑟 ′ of 𝑒 and 𝑟, respectively. By (iii),
they lift uniquely to a (strong epi-mono) factorisation (𝑚, 𝑠) ◦ (𝑒′, 𝑟 ′) of (𝑒, 𝑟) in B/𝐹. But
(𝑒′, 𝑟 ′) is a strong epi by (ii), and so is (𝑒, 𝑟) by hypothesis, and (𝑚, 𝑠) is a mono between
them, hence an isomorphism by Lemma 83. Thus, 𝑚 and 𝑠 are both isomorphisms, and
hence 𝑒 and 𝑟 are both strong epis, as desired. J

I Lemma 77. The forgetful functor

H -Trans2 → ÊT × V̂T
2

creates all colimits and limits, as well as (strong epi)-mono factorisations.

Proof. This is clear for colimits. For limits, the projection H -Trans2 → ÊT × V̂T
2

creates all
limits that the functor Δ2 preserves (because H -Trans2 is its lax limit), i.e., all of them by
Proposition 67. For (strong epi)-mono factorisations, this follows by Lemma 76. J

22 A more general categorical framework for congruence of applicative bisimilarity

I Lemma 78. For any diplopic H-transition system 𝑋, the forgetful functor

H -Trans2/𝑋2 → H -Trans2 → ÊT × V̂T
2

creates all colimits and connected limits.

Proof. The projection (H -Trans2)/𝑋2 → H -Trans2 creates colimits and connected limits,
as any projection from a slice category does. The result thus follows by Lemma 77. J

I Lemma 79. Flexible bisimulations are closed under filtered colimits in H -Trans2
2, i.e., in

the arrow category of H -Trans2.

Proof. Let (𝑟∞ : 𝑅∞ → 𝑋∞) = colim 𝑗 (𝑟 𝑗 : 𝑅 𝑗 → 𝑋 𝑗) denote the colimit of any filtered digaram
of functional flexible bisimulations. By Lemma 78 and the fact that colimits are pointwise in
the arrow category, we have

(𝑅∞)0 � colim 𝑗 (𝑅(𝑗)0) (𝑅∞)𝑠 � colim 𝑗 (𝑅(𝑗)𝑠) (𝑅∞)1 � colim 𝑗 (𝑅(𝑗)1)

and

(𝑋∞)0 � colim 𝑗 (𝑋 (𝑗)0) (𝑋∞)𝑠 � colim 𝑗 (𝑋 (𝑗)𝑠) (𝑋∞)1 � colim 𝑗 (𝑋 (𝑗)1).

Furthermore, all morphisms
𝛾𝑅∞ : (𝑅∞)𝑠 → (𝑅∞)0 𝜕𝑅∞ : (𝑅∞)1 → Δ2 (𝑅∞)

𝛾𝑋∞ : (𝑋∞)𝑠 → (𝑋∞)0 𝜕𝑋∞ : (𝑋∞)1 → Δ2 (𝑋∞)

(𝑟∞)1 : (𝑅∞)1 → (𝑋∞)1 (𝑟∞)𝑠 : (𝑅∞)𝑠 → (𝑋∞)𝑠 (𝑟∞)0 : (𝑅∞)0 → (𝑋∞)0

are induced by universal property.
Now consider any 𝑝 and 𝑞 making the following diagram commute.

y𝑐 (𝑋∞)1

Δ2,s,l (𝑅∞) Δ2,s,l (𝑋∞)

𝜕𝑋∞

Δ2,s,l𝑟∞

𝑞

𝑝

The functor Δ2,s,l is finitary, and the object y𝑐 finitely presentable, so 𝑝 factors through
some Δ2,s,l (𝑅𝑘), say as 𝑝𝑘 , and 𝑞 factors through some (𝑋𝑙)1, say as 𝑞𝑙. Furthermore, by
filteredness, we find ℎ and morphisms 𝑘

𝑓
−→ ℎ

𝑔
←− 𝑙, so that we may define 𝑝ℎ and 𝑞ℎ as in

the following diagram.

(𝑋ℎ)1

(𝑋𝑙)1

y𝑐 Δ2,l,t (𝑋ℎ)

Δ2,s,l (𝑅𝑘)

Δ2,l,t (𝑅ℎ)

𝜕𝑋ℎ

Δ2,s,l ((𝑟ℎ)𝐷,𝑉)

𝑞ℎ

Δ2,s,l (𝑅 𝑓)

𝑝𝑘

𝑝ℎ

(𝑋𝑔)1

𝑞𝑙

T. Hirschowitz and A. Lafont 23

Because the following diagram commutes,

(𝑋∞)1

(𝑋ℎ)1

y𝑐 ? Δ2,l,t (𝑋ℎ) Δ2,l,t (𝑋∞)

Δ2,l,t (𝑅ℎ)

Δ2,l,t (𝑅∞)

𝜕𝑋ℎ

Δ2,s,l ((𝑟ℎ)𝐷,𝑉)

𝑞ℎ

𝑝ℎ

𝑞 𝜕𝑋∞

𝑝 Δ2,s,l (𝑟∞)

by filteredness, we find some 𝑗 and morphism 𝑢 : ℎ → 𝑗 such that Δ2,s,l𝑋𝑢 coequalises the
question marked parallel pair above. We then define 𝑝 𝑗 and 𝑞 𝑗 by composition to obtain a
commuting diagram as the following

(𝑋 𝑗)1

(𝑋ℎ)1

y𝑐 ? Δ2,l,t (𝑋ℎ) Δ2,l,t (𝑋 𝑗)

Δ2,l,t (𝑅ℎ)

Δ2,l,t (𝑅 𝑗)

𝜕𝑋ℎ

Δ2,s,l ((𝑟ℎ)𝐷,𝑉)

𝑞ℎ

𝑝ℎ

Δ2,l,t (𝑋𝑢)

𝑞 𝑗 𝜕𝑋𝑗

𝑝 𝑗 Δ2,s,l (𝑟 𝑗)

(𝑋𝑢)1

Δ2,l,t (𝑅𝑢)

(where again the question marked parallel pair may not commute but the exterior does).
We thus obtain a situation like

y𝑐

(𝑅 𝑗)1 (𝑋 𝑗)1

(𝑅∞)1 (𝑋∞)1

Δ2,s,l (𝑅 𝑗) Δ2,s,l (𝑋 𝑗)

Δ2,l,t (𝑅∞) Δ2,l,t (𝑋∞).

𝜕𝑅∞

𝜕𝑋∞

Δ2,s,l ((𝑟∞)𝐷,𝑉)

(𝑟∞)1

𝑞

𝑝 𝑗

𝜕𝑅𝑗

𝑚

Δ2,s,l ((𝑟 𝑗)𝐷,𝑉)

𝜕𝑋𝑗

(𝑟 𝑗)1

𝑞 𝑗𝑝

But 𝑟 𝑗 : 𝑅 𝑗 → 𝑋 𝑗 is a functional flexible bisimulation, so we find a mediating arrow 𝑚 as
shown. The composite

y𝑐
𝑚−→ (𝑅 𝑗)1 → (𝑅∞)1

24 A more general categorical framework for congruence of applicative bisimilarity

finally provides the desired mediating arrow. J

I Corollary 80. For any diplopic H-transition system 𝑋, flexible bisimulations 𝑅 → 𝑋2 over
𝑋 are closed under filtered colimits in H -Trans2/𝑋2.

I Lemma 81. For any diplopic H-transition system 𝑋, flexible bisimulations 𝑅 → 𝑋2 over
𝑋 are closed under span composition.

Proof. We need to show that the square

(𝑅; 𝑆)1 𝑋1

Δ2,s,l (𝑅; 𝑆) Δ2,s,l𝑋

𝜋1

Δ2,s,l 𝜋1

is a pointwise weak pullback. By construction, this square factors as

(𝑅; 𝑆)1 𝑅1 𝑋1

Δ2,s,l (𝑅; 𝑆) Δ2,s,l𝑅 Δ2,s,l𝑋
Δ2,s,l 𝜋1

𝜋1 𝜋1

Δ2,s,l 𝜋1

where the right-hand square is a pointwise weak pullback by hypothesis. Now the left-hand
square is the left-hand face in the following diagram,

(𝑅; 𝑆)1 𝑆1

𝑅1 𝑋1

Δ2,s,l (𝑅; 𝑆) Δ2,s,l𝑆

Δ2,s,l𝑅 Δ2,s,l𝑋

𝜋2

Δ2,s,l 𝜋2

𝜋1

Δ2,s,l 𝜋1

whose top and bottom faces are pullbacks by Lemma 78 and the fact that Δ2,s,l : V̂T
2 → ÊT,

being a right adjoint, is continuous. Since the right-hand face is a weak pullback by hypothesis,
so is the left face by [18, Lemma 9.26, (i), then (ii)]. We finally conclude by [18, Lemma 9.26,
(i)]. J

I Lemma 82. For any diplopic H-transition system 𝑋, flexible bisimulations 𝑅 → 𝑋2
𝐷,𝑉

over
𝑋 are closed under span composition.

Proof. Given any two flexible bisimulations, say 𝑅 and 𝑆, we observe that there is a projection
𝜋 : 𝑅⇑; 𝑆⇑ → (𝑅; 𝑆)⇑ making the following diagram commute.

𝑅⇑; 𝑆⇑

(𝑅; 𝑆)⇑ 𝑋2
1

Δ2 (𝑅);Δ2 (𝑆) Δ2 (𝑅; 𝑆) Δ2𝑋
2

𝜋

𝑋𝜕

y

�

To see this, we observe that by interchange of limits 𝑅⇑; 𝑆⇑ is the limit of

T. Hirschowitz and A. Lafont 25

𝑋1 𝑋1 𝑋1

Δ2𝑅 Δ2𝑆

Δ2𝑋 Δ2𝑋 Δ2𝑋

𝑋𝜕

Δ2 𝜋1 Δ2 𝜋2 Δ2 𝜋1 Δ2 𝜋2

𝑋𝜕 𝑋𝜕

while (𝑅; 𝑆)⇑ is the limit of the following subdiagram.

𝑋1 𝑋1

Δ2𝑅 Δ2𝑆

Δ2𝑋 Δ2𝑋 Δ2𝑋

𝑋𝜕

Δ2 𝜋1 Δ2 𝜋2 Δ2 𝜋1 Δ2 𝜋2

𝑋𝜕

Finally, by Lemma 81, we know that 𝑅⇑; 𝑆⇑ is a flexible bisimulation, hence so is 𝑅; 𝑆 by
Lemma 68. J

I Lemma 83. For any strong epis 𝑒 : 𝑋 → 𝑌 and 𝑒′ : 𝑋 → 𝑍, any mono 𝑓 : 𝑌 → 𝑍 such that
𝑓 ◦ 𝑒 = 𝑒′ is an isomorphism.

Proof. We find a section of 𝑓 by lifting as in

𝑋 𝑌

𝑍 𝑍.

𝑒

𝑒′ 𝑓
𝑙

But 𝑙 is in fact an inverse by uniqueness of lifting in
𝑋 𝑌

𝑍

𝑌 𝑍.

𝑒

𝑒

𝑒′

𝑓

𝑓

𝑓

𝑙

J

I Lemma 84. For any diplopic H-transition system 𝑋, flexible bisimulations 𝑅 → 𝑋2 over
𝑋 are closed under images.

Proof. Both ÊT and V̂T
2

are (isomorphic to) presheaf categories, hence images are computed
as (strong epi-mono) factorisations. Furthermore, Δ2 preserves pullbacks by Proposition 67,
hence by Lemma 76 the forgetful functor H -Trans2 → ÊT × V̂T

2
creates (strong epi-mono)

factorisations, hence images.
Now, consider any flexible bisimulation 𝑝 : 𝑅 → 𝑋2. As we just saw, we obtain a (strong

epi-mono) factorisation of 𝑝 by factoring 𝑝1 and 𝑝𝐷,𝑉 . We then need to show that the square

im(𝑅1) 𝑋1

Δ2,s,l (im(𝑅𝐷,𝑉)) Δ2,s,l𝑋
Δ2,s,l 𝜋1

𝑋𝜕

26 A more general categorical framework for congruence of applicative bisimilarity

is a pointwise weak pullback. But by Proposition 67, Δ2,l,s preserves epimorphisms. Thus,
since the exterior of

𝑅1 im(𝑅1) 𝑋1

Δ2,s,l (𝑅𝐷,𝑉) Δ2,s,l (im(𝑅𝐷,𝑉)) Δ2,s,l𝑋
Δ2,s,l 𝜋1

𝑋𝜕

is a pointwise weak pullback by hypothesis, we conclude by Lemma 68. J

A.2 Composition of flexible and rigid simulations
Our goal in this subsection is to prove the following.

I Lemma 85. For any H-transition system 𝑋, diplopic flexible simulation 𝑅 → 𝑋2, and
simulation 𝑆0 → 𝑋2

0 , equipped with a span morphism 𝜌 : 𝑅0; 𝑆0 → 𝑅0, the relation im(𝑅; 𝜃𝑆0)
is a flexible simulation, hence so is im(𝑅𝐷,𝑉 ; 𝑆0)⇑.

In order to prove this smoothly, we introduce the following notion of triplopic transition
system.

I Definition 86. Let H -Trans3 denote the lax limit of V̂T
3 Δs×Δl×Δt−−−−−−−→ ÊT. Objects of H -Trans3

are called triplopic transition systems.

I Notation 6. We denote by Δ3, Δ3,s, Δ3,s,l,... the functors analogous to Δ2, Δ2,s, Δ2,s,l,...,
and often treat the projection H -Trans3 → V̂T

3
as an implicit coercion, thus writing, e.g.,

Δ3,s,l𝑋 for any 𝑋 ∈ H -Trans3, meaning Δs (𝑋𝑠) × Δl (𝑋𝑙).

A triplopic transition system 𝑋 thus consists of presheaves 𝑋𝑠 , 𝑋𝑙 , 𝑋𝑡 ∈ V̂T and 𝑋1 ∈ ÊT,
together with a morphism 𝑋1 → Δs (𝑋𝑠) × Δl (𝑋𝑙) × Δt (𝑋𝑡).
I Remark 87. We use a boldface 2 in H -Trans2 and a normal 3 in H -Trans3, to reflect the
fact that any diplopic transition system 𝑋 ∈ H -Trans2 comes with a morphism 𝑋𝑠 → 𝑋0,
while there is no such requirement for triplopic transition systems.

Let us readily notice the following useful facts.

I Proposition 88. All functors Δ3,Δ3,l,Δ3,s,Δ3,t,Δ3,s,l, . . . are algebraic right adjoints and
preserve epimorphisms.

Proof. Algebraic functors between presheaf categories automatically preserve epimorphisms,
so it suffices to prove that all these functors are algebraic right adjoints.

Algebraic right adjoints being closed under pointwise finite products, it further suffices to
prove that each of Δ3,l, Δ3,s, and Δ3,t is an algebraic right adjoint. Now each of these functors
Δ3,𝑥 is the corresponding functor Δ𝑥 , precomposed with one of the projections V̂T

3 → V̂T.
But each Δ𝑥 is an algebraic right adjoint by Proposition 66, and projections, being restriction
functors, are left and right adjoints, hence algebraic right adjoints, hence the result. J

I Lemma 89. The forgetful functor

H -Trans3 → ÊT × V̂T
2

creates all colimits and limits, as well as (strong epi)-mono factorisations.

Proof. Just as Lemma 77. J

T. Hirschowitz and A. Lafont 27

The idea of triplopic transition systems is to unify flexible and rigid bisimulation into
a single framework, while allowing maximal flexibility in the choice of input and output
states, and labels. Let us now define (bi)simulation in triplopic transition systems. We
will then describe embeddings of transition systems and diplopic transition systems into
triplopic transition systems, proving in each case that the embedding preserves and reflects
bisimulation.

I Definition 90. A morphism 𝑓 : 𝑅 → 𝑋 of triplopic transition systems is a functional
bisimulation iff the square

𝑅1 𝑋1

Δ3,s,l𝑅 Δ3,s,l𝑋

is a pointwise weak pullback. Spans and relations in H -Trans3 are called simulations and
bisimulations analogously to the case of H -Trans2.

I Proposition 91. Mapping any diplopic transition system

(𝑋1, 𝛾 : 𝑋𝑠 → 𝑋0, 𝜕 : 𝑋1 → Δs (𝑋𝑠) × Δl,t (𝑋0))

to
(𝑋1, 𝑋𝑠 , 𝑋0, 𝑋0, 𝜕 : 𝑋1 → Δs (𝑋𝑠) × Δl,t (𝑋0))

yields an embedding 𝜄 : H -Trans2 → H -Trans3.

Proof. Straightforward. J

I Notation 7. By composition with H -Trans ↩→ H -Trans2, we obtain a further embedding
H -Trans ↩→ H -Trans3. Treating the former as an implicit coercion, we thus often also merely
denote the composite by 𝜄.

I Proposition 92. A morphism (resp. a span) of diplopic transition systems is a functional
bisimulation (resp. a simulation or bisimulation) iff its embedding into triplopic transition
systems is.

Proof. Straightforward. J

Beyond the embedding H -Trans ↩→ H -Trans3 that we saw above, there is the following
embedding of spans:

I Proposition 93. For any 𝑋 ∈ H -Trans, mapping any span 𝑅0 → 𝑋2
0 in V̂T to the triplopic

transition system 𝜃 (𝑅0) given by (𝑅0, 𝑋0, 𝑅0) and 𝜃 (𝑅0)1 = 𝑅
↑
0, i.e., given by the pullback

𝑅
↑
0 𝑋2

1

Δs (𝑅0) × Δl (𝑋0) × Δt (𝑅0) Δ𝑋2
0 ,

extends to an embedding 𝜃 : V̂T/𝑋2
0 → H -Trans3/𝑋2, which we call the thin embedding.

I Remark 94. Thinness here refers to labels, which are forced to agree on both sides of any
transition in 𝜃 (𝑅0).

28 A more general categorical framework for congruence of applicative bisimilarity

The thin embedding enables the following characterisation of bisimulation in H-transition
systems in terms of bisimulation in triplopic H-transition systems:

I Proposition 95. For any 𝑋 ∈ H -Trans, a span 𝑅0 → 𝑋2
0 is a simulation (resp. bisimulation)

iff 𝜃 (𝑅0) → 𝑋2 is one.

Proof. Both statements mean that the square

𝑅
↑
0 𝑋1

Δs (𝑅0) × Δl (𝑋0) Δs,l𝑋0

𝜋1

𝜋1

is a pointwise weak pullback. J

Finally, we have the easy

I Proposition 96. (Bi)simulations are closed under span composition in H -Trans3.

Proof. By symmetry it suffices to show that simulations are closed under span composition.
Let us thus consider any simulations 𝑅 and 𝑆 over some 𝑋 ∈ H -Trans3. We must show that
the square

(𝑅; 𝑆)1 𝑋1

Δ3,s,l (𝑅; 𝑆) Δ3,s,l𝑋

𝜋1

Δ3,s,l 𝜋1

is a pointwise weak pullback. This square factors as

(𝑅; 𝑆)1 𝑅1 𝑋1

Δ3,s,l (𝑅; 𝑆) Δ3,s,l (𝑅) Δ3,s,l𝑋,

𝜋1

Δ3,s,l 𝜋1

𝜋1

Δ3,s,l 𝜋1

where the right-hand square is a pointwise weak pullback by hypothesis, and the left-hand
square is the left-hand face in

(𝑅; 𝑆)1 𝑆1

𝑅1 𝑋1

Δ3,s,l (𝑅; 𝑆) Δ3,s,l𝑆

Δ3,s,l𝑅 Δ3,s,l𝑋

𝜋2

Δ3,s,l 𝜋2

𝜋1

Δ3,s,l 𝜋1

whose top and bottom faces are pullbacks by Lemma 78 and the fact that Δ3,s,l, being a right
adjoint, is continuous. Since the right-hand face is a pointwise weak pullback by hypothesis,
so is the left-hand face by [18, Lemma 9.26, (i), then (ii)]. The whole rectangle thus is a
pointwise weak pullback by [18, Lemma 9.26, (i)], as desired. J

I Proposition 97. Triplopic (bi)simulations are closed under images.

Proof. By symmetry it suffices to treat the case of simulations. Let 𝑅 → 𝑋2 be any triplopic
simulation. Then by Proposition 89 we need to prove that the right-hand square below is a
pointwise weak pullback,

T. Hirschowitz and A. Lafont 29

𝑅1 im(𝑅1) 𝑋2
1

Δ3,s,l𝑅 Δ3,s,l im(𝑅) Δ3,s,l𝑋
2

which is the case by Lemma 68 and the fact that Δ3,s,l preserves epis by algebraicity
(Lemma 88). J

I Lemma 98. Given a retraction 𝑅 � 𝑆 over any 𝑋2 in H -Trans3, if 𝑆 is a simulation, then
so is im(𝑅).

Proof. The given retraction and its section yield morphisms

im(𝑅) → im(𝑆) and im(𝑆) → im(𝑅),

hence im(𝑅) � im(𝑆), so we conclude by Lemma 97. J

Proof of Lemma 85. The morphism 𝜌 : 𝑅; 𝜄𝑆 → 𝑅; 𝜃𝑆 defined by the triple

id : 𝑅0; 𝑆0 → 𝑅0; 𝑆0 𝜌 : 𝑅0; 𝑆0 → 𝑅0 id : 𝑅0; 𝑆0 → 𝑅0; 𝑆0

admits a section, namely the morphism 𝑅; 𝜃𝑆 → 𝑅; 𝜄𝑆 defined by

id : 𝑅0; 𝑆0 → 𝑅0; 𝑆0 𝑅0 � 𝑅0; 𝑋0 → 𝑅0; 𝑆0 id : 𝑅0; 𝑆0 → 𝑅0; 𝑆0

(induced by reflexivity of 𝑆0). Thus, im(𝑅; 𝜄𝑆) is a triplopic simulation by Lemma 98,
hence a diplopic one by Proposition 92. Finally, im(𝑅𝐷,𝑉 ; 𝑆0)⇑ is a flexible simulation by
Proposition 75. J

A.3 Fundamental property of flexible bisimulation
In this section, we reduce the theorem to a certain result involving flexible bisimulations,
using the following fundamental property of flexible bisimulation:

I Proposition 99. For any 𝑋 ∈ H -Trans and reflexive, flexible bisimulation 𝑅 → 𝑋2,
𝑅0 → 𝑋2

0 is a bisimulation.

We need the following lemma.

I Lemma 100. Consider any commuting diagram of the following form

𝐴 𝐵 𝐶 𝐷

𝑋 𝑌 𝑍

𝑇 𝑈 𝑉 𝑊

𝑓

𝑔

𝑗

𝑦𝑥

𝑡

𝑙

𝑢

𝑚 𝑛

ℎ

𝑤

𝑧

𝑘

𝑣

(i.e., all three squares and the rectangle commute, plus 𝑧 𝑓 = 𝑘 𝑗𝑥), such that all three squares
below are weak pullbacks.

30 A more general categorical framework for congruence of applicative bisimilarity

𝑋 𝑌

𝑇 𝑈

𝑗

𝑡

𝑙

𝑢

𝐴 𝐶

𝑋 𝑌 𝑍

𝑓

𝑗

𝑥 𝑧

𝑘

𝐵 𝐶 𝐷

𝑌

𝑈 𝑉 𝑊

𝑔

𝑦

𝑢

𝑚 𝑛

ℎ

𝑤

Then, the exterior is again a weak pullback.

Proof. First, we find 𝑖 : 𝐴→ 𝐵 such that 𝑔𝑖 = 𝑓 and 𝑢𝑦𝑖 = 𝑙𝑡𝑥, by weak universal property of
𝐵.

Now, consider any cone (𝑝, 𝑞) as shown below.

𝐸

𝐴 𝐵 𝐶 𝐷

𝑋 𝑌 𝑍

𝑇 𝑈 𝑉 𝑊

𝑖 𝑔

ℎ

𝑦𝑥

𝑡

𝑙

𝑢 𝑣

ℎ

𝑤

𝑧

𝑘

𝑝

𝑞

𝑟

𝑠

𝑔𝑟

𝑚 𝑛

𝑑

By weak universal property of 𝐵, we find 𝑟 : 𝐸 → 𝐵 such that ℎ𝑔𝑟 = 𝑝 and 𝑣𝑦𝑟 = 𝑙𝑞. By weak
universal property of 𝑋, we then find a morphism 𝑠 : 𝐸 → 𝑋 such that 𝑢𝑠 = 𝑞 and ℎ𝑠 = 𝑦𝑟.
Finally, by weak universal property of 𝐴, we find the desired morphism 𝑑 : 𝐸 → 𝐴 such that
𝑥𝑑 = 𝑠 and 𝑔𝑖𝑑 = 𝑔𝑟. Please note that nothing here guarantees that 𝑖𝑑 = 𝑟, nor that 𝑦𝑖 = ℎ𝑥,
but this does invalidate the result. J

Proof of Proposition 99. By symmetry, it suffices to check that the first projection 𝜋1 : 𝑅0 →
𝑋0 is a simulation. For any 𝑐 ∈ ET, we form the following diagram,

𝑅
↑
0 (𝑐) 𝑅1 (𝑐) (𝑋1 × 𝑋1) (𝑐) 𝑋1 (𝑐)

(Δs (𝑅0) × Δl (𝑋0) × Δt (𝑅0)) (𝑐) (Δs (𝑅0) × Δl (𝑅0) × Δt (𝑅0)) (𝑐) (Δs (𝑋0)2 × Δl (𝑋0)2 × Δt (𝑋0)2) (𝑐)

(Δs (𝑅0) × Δl (𝑋0)) (𝑐) (Δs (𝑅0) × Δl (𝑅0)) (𝑐) (Δs (𝑋0)2 × Δl (𝑋0)2) (𝑐) (Δs (𝑋0) × Δl (𝑋0)) (𝑐)

𝜋1

𝜋1×𝜋1

and conclude by Lemma 100. To check that it applies, we observe that
the first requirement holds easily (the bottom left square is easily seen to be a pullback);
the second requirement holds by construction of 𝑅⇑0; and
the last requirement holds by hypothesis that 𝑅 is a flexible bisimulation. J

Let us now use the fundamental property (Proposition 99) of flexible bisimulation to
reduce congruence of bisimilarity to the search for a suitable flexible enhanced bisimulation.

I Corollary 101. Consider any syntactic signature d = (Σ, (Γ𝑖 , 𝑑𝑖)𝑖∈𝑛). Let 𝜎 denote the
generated enhanced syntax 𝜎(d). Let 𝑋 be any 𝜎-transition system, and suppose that there
exists a reflexive, enhanced, flexible bisimulation relation 𝑅 → 𝑋2 such that ∼𝜎

𝑋
⊆ 𝑅0 and 𝑅0

is a congruence. Then enhanced bisimilarity ∼𝜎
𝑋

is a congruence.

T. Hirschowitz and A. Lafont 31

Proof. Consider any reflexive, enhanced, flexible bisimulation relation 𝑅 → 𝑋2 such that 𝑅0
contains enhanced bisimilarity and is a congruence. By Proposition 99, 𝑅0 is an enhanced
bisimulation, so by terminality of ∼𝜎

𝑋
, we have 𝑅0 ⊆ ∼𝜎𝑋 , hence morphisms

Σ0 (∼𝜎𝑋) → Σ0 (𝑅0) → 𝑅0 → ∼𝜎𝑋

over 𝑋2
0 . J

A.4 Howe closure: basic properties
In this section, we introduce our candidate reflexive, enhanced, flexible bisimulation relation
𝑅 → Z2 such that ∼Z ⊆ 𝑅0 and 𝑅0 is a congruence. As is standard, we

construct it directly as a congruence,
prove that it is reflexive and enhanced (relatively easily), and, finally,
struggle to prove that it (or rather its transitive closure) is a flexible bisimulation.

I Definition 102. Let the Howe functor Σ
+;∼𝑋
0 : V̂T/𝑋2

0 → V̂T/𝑋2
0 map any 𝑅0 → 𝑋2

0 to
the coproduct span Σ0 (𝑅0) + (𝑅0;∼𝑋), where the second term more concretely denotes the
following composite span.

𝑅0;∼𝑋

𝑅0 ∼𝑋

𝑋0 𝑋0 𝑋0

𝜋1 𝜋2𝜋2𝜋1

y

Let the proof-relevant Howe closure 𝑅�0 be the free Σ
+;∼𝑋
0 -algebra on 𝑅0, and the

(proof-irrelevant, or relational) Howe closure 𝑅•0 denote the image of 𝑅�0 → 𝑋2
0 .

The Howe functor is a finitary endofunctor on a presheaf category, so we have [27]:

I Proposition 103. The free Σ
+;∼𝑋
0 -algebra on any 𝑅0 exists and is computed by the standard

initial chain, and the forgetful functor Σ
+;∼𝑋
0 - alg→ V̂T/𝑋2

0 is finitary monadic.

I Proposition 104. Let 𝒰 : Sub(𝑋2
0) ↩→ V̂T/𝑋2

0 denote the canonical embedding, and let
Σ = Σ

+;∼𝑋
0 just for this proposition. The composite endofunctor im ◦Σ∗ ◦𝒰 on Sub(𝑋2

0) is a
monad, which is in fact the free monad on im ◦Σ ◦𝒰. Consequently, the relational Howe
closure (𝒰𝑅)• on a relation 𝑅 ∈ Sub(𝑋2

0) is the free (im ◦Σ ◦𝒰)-algebra over 𝑅.

Proof. Using algebraicity of Σ0, it is straightforward to show that Σ preserves epimorphisms.
For any 𝑅 ∈ V̂T/𝑋2

0 , letting 𝑇 = 𝒰 ◦ im denote the monad induced by the adjunction im a 𝒰,
we thus have by unique lifting a morphism 𝛿𝑅 : Σ𝑇𝑅 → 𝑇Σ𝑅 as in the following diagram,

Σ𝑅 𝒰 imΣ𝑅

Σ𝒰 im 𝑅 Σ(𝑋2
0) 𝑋2

0

Σ𝑒

Σ𝑚

𝛿𝑅

where 𝑅 → 𝑋2
0 factors as 𝑒 ◦ 𝑚 and the last horizontal morphism is

Σ
+;∼𝑋
0 (𝑋2

0) = Σ0 (𝑋2
0) + (𝑋2

0);∼𝑋
[〈𝑎◦Σ0 (𝜋1) ,𝑎◦Σ0 (𝜋2) 〉, 〈𝜋1◦𝜋1 , 𝜋2◦𝜋2 〉]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑋2

0 .

The result thus follows from the next lemma. J

32 A more general categorical framework for congruence of applicative bisimilarity

I Lemma 105. Consider a full, reflective embedding 𝑈 : 𝒟 ↩→ 𝒞 from some poset 𝒟 into
a locally finitely presentable category 𝒞, say with left adjoint 𝐿 : 𝒞 → 𝒟, together with a
finitary endofunctor Σ on 𝒞. Furthermore, assume given a functor distributive law, i.e.,
a natural transformation 𝛿 : Σ𝑇 → 𝑇Σ, where 𝑇 := 𝑈𝐿 denotes the induced monad. Then,
𝐿Σ∗𝑈 is the free monad on 𝐿Σ𝑈, hence in particular the free 𝐿Σ𝑈-algebra on any 𝐷 ∈ 𝒟 is
𝐿Σ∗𝑈𝐷.

I Lemma 106. In the setting of Lemma 105, all objects of the form 𝑈𝐷 ∈ 𝒞 are subterminal,
in the sense that any two parallel morphisms to 𝑈𝐷 are equal.

Proof. Consider any 𝑓 , 𝑔 : 𝐶 → 𝑈𝐷. By adjunction, these correspond bijectively to morph-
isms 𝑓 , 𝑔 : 𝐿𝐶 → 𝐷, which, because 𝒟 is a poset, are equal. J

Proof of Lemma 105. By [27], Σ admits a free monad Σ∗.
Furthermore, by Lemma 106, the given functor distributive law 𝛿 is in fact a functor-

monad distributive law, in the sense that it commutes with the unit and multiplication of
𝑇 .

Now, by a reasoning analogous to [3], functor-monad distributive laws 𝛿 : Σ𝑇 → 𝑇Σ

correspond bijectively to liftings of the monad 𝑇 to Σ - alg, i.e., monads 𝑇 𝛿 on Σ - alg making
the following square commute,

Σ - alg Σ - alg

𝒞 𝒞

𝑇 𝛿

𝑇

whose multiplication and unit are mapped by the forgetful functor to those of 𝑇 . The given
functor-monad distributive law 𝛿 thus corresponds to such a lifting. But Σ - alg � Σ∗ - Alg
over 𝒞, hence we get a lifting of 𝑇 to Σ∗ - Alg, which by [3] again amounts to a monad
distributive law, say 𝛿 : Σ∗𝑇 → 𝑇Σ∗.

From this, using the fact that the counit is an isomorphism (which follows from full
faithfulness of 𝑈), we equip the composite 𝐿Σ∗𝑈 with monad structure:

the unit is the composite 𝑅
(𝜀𝑇)−1

−−−−−−→ 𝐿𝑈𝑅
𝐿𝜂Σ

∗

−−−−→ 𝐿Σ∗𝑈𝑅,
the multiplication is

𝐿Σ∗𝑈𝐿Σ∗𝑈𝑅 = 𝐿Σ∗𝑇Σ∗𝑈𝑅
𝐿𝛿−−→ 𝐿𝑇Σ∗Σ∗𝑈𝑅

𝜀𝑈𝜇Σ
∗
𝑈𝑅

−−−−−−−−→ 𝐿Σ∗𝑈𝑅,

and the monad laws hold automatically since 𝒟 is a poset.

Moreover, given any 𝑅 ∈ 𝒟, the following are equivalent
Σ∗-algebra structure (in the monad sense) on 𝑈𝑅,
Σ∗-algebra structure (in the functor sense) on 𝑈𝑅,
Σ-algebra structure on 𝑈𝑅,
𝐿Σ∗𝑈-algebra structure (in the monad sense) on 𝑅,
𝐿Σ∗𝑈-algebra structure (in the functor sense) on 𝑅,
𝐿Σ𝑈-algebra structure on 𝑅.

Indeed,
Σ-algebra structure Σ𝑈𝑅 → 𝑈𝑅 corresponds by adjunction to 𝐿Σ𝑈-algebra structure
𝐿Σ𝑈𝑅 → 𝑅;
Σ-algebra structure Σ𝑈𝑅 → 𝑈𝑅 corresponds by universal property of Σ∗ to Σ∗-algebra
structure Σ∗𝑈𝑅 → 𝑈𝑅 in the monad sense;

T. Hirschowitz and A. Lafont 33

by subterminality, Σ∗-algebra structures Σ∗𝑈𝑅 → 𝑈𝑅 in the monad and functor sense are
equivalent;
by adjunction again, Σ∗-algebra structure Σ∗𝑈𝑅 → 𝑈𝑅 in the functor sense is equivalent
to 𝐿Σ∗𝑈-structure 𝐿Σ∗𝑈𝑅 → 𝑅 in the functor sense;
and finally, because 𝒟 is a poset, 𝐿Σ∗𝑈-structures 𝐿Σ∗𝑈𝑅 → 𝑅 in the functor and monad
sense are equivalent.

We thus in particular get (𝐿Σ∗𝑈) - Alg � (𝐿Σ𝑈) - alg over 𝒟, hence the result. J

I Definition 107. Let 𝑆+;∼𝑋 denote the monad induced by Σ
+;∼𝑋
0 on V̂T/𝑋2

0 .

I Lemma 108. Let 𝑅′0 be the proof-relevant (resp. proof-irrelevant) Howe closure 𝑅�0 (resp.
𝑅•0) of (resp. a relation) 𝑅0. It satisfies the following properties.

(i) 𝑅′0 is a Σ0-algebra;
(ii) there exists an action 𝑅′0;∼𝑋 → 𝑅′0 over 𝑋2

0 .
Furthermore, if 𝑋0 = Σ∗0 (∅) is the initial Σ0-algebra, we have:

(iii) 𝑅′0 is reflexive,
(iv) there exists a morphism ∼𝑋 → 𝑅′0 over 𝑋2

0 .

Proof. We prove the properties for the proof-relevant Howe closure – they follow easily for
the proof-irrelevant one.
(i) By definition 𝑅�0 is an Σ

+;∼𝑋
0 -algebra, hence in particular a Σ0-algebra, or more correctly

an algebra for the obvious lifting of Σ0 to V̂T/𝑋2
0 .

(ii) As an Σ
+;∼𝑋
0 -algebra, 𝑅�0 is an algebra for the second term functor, i.e., a morphism of

the desired form 𝑅�0 ;∼𝑋 → 𝑅�0 .
Let us now assume that 𝑋0 is the initial Σ0-algebra. Then, by initiality of 𝑋0 and (i), there
is a unique Σ0-algebra morphism 𝑋0 → 𝑅�0 , which witnesses reflexivity.

We then use reflexivity and (ii) to construct the following composite

∼𝑋 � 𝑋0;∼𝑋 → 𝑅�0 ;∼𝑋 → 𝑅�0 ,

which proves the second point. J

A further crucial property is:

I Proposition 109. If 𝑋0 is an 𝑆𝑇-algebra, then the proof-relevant Howe closure 𝑅�0 on any
𝑅0 is an 𝑆𝑇-algebra, and 𝑅�0 → 𝑋2

0 is a morphism of 𝑆𝑇-algebras. Furthermore, the relational
Howe closure 𝑅•0 is enhanced.

In order to prove this, we need a few intermediate steps.

I Definition 110. For any bifunctor 𝐹 on a category C and 𝐹Δ-algebra 𝑋, let 𝐹 denote the
lifting of 𝐹 to C/𝑋2, which maps any 𝑈 → 𝑋2 and 𝑉 → 𝑋2 to the composite

𝐹 (𝑈,𝑉) → 𝐹 (𝑋2, 𝑋2) → 𝐹 (𝑋, 𝑋)2 → 𝑋2.

I Lemma 111. For any bifunctor Γ on a category C with pullbacks, object 𝑋 ∈ C, and spans
𝑢𝑖 : 𝑈𝑖 → 𝑋2, for 𝑖 ∈ 3, there is a morphism

Γ((𝑈1;𝑈2),𝑈3) → Γ(𝑈1,𝑈3);Γ(𝑈2, 𝑋)

of spans over 𝑋.

34 A more general categorical framework for congruence of applicative bisimilarity

Proof. We construct the desired morphism by universal property of pullback, as in the
following diagram.

Γ ((𝑈1;𝑈2),𝑈3) Γ (𝑈2,𝑈3)

Γ (𝑈1,𝑈3);Γ (𝑈2, 𝑋) Γ (𝑈2, 𝑋)

Γ (𝑈1,𝑈3) Γ (𝑋,𝑈3)

Γ (𝑈1,𝑈3) Γ (𝑋, 𝑋)

Γ (𝜋1 ,𝑈3)

Γ (𝜋2 ,𝑈3)
𝜋1

𝜋2

Γ (𝜋1 ,𝑋)

Γ (𝜋2 , 𝜋2)

Γ (𝑋,𝜋2)

Γ (𝑈2 , 𝜋2)

J

I Lemma 112. Assume that 𝑋0 is a 𝜎-algebra with structure given by

a : Σ0𝑋0 → 𝑋0 . . . b𝑖 : Γ𝑖 (𝑋0, 𝑋0) → 𝑋0 . . . ,

and let the derived monad algebra structures be as follows.

ā : 𝑆𝑋0 → 𝑋0 . . . b̄<𝑖 : 𝑇𝑖𝑋0 → 𝑋0

Then, for all 𝑖 ∈ 𝑛, the incremental structural law

𝑑𝑖 : Γ𝑖 (Σ0𝐴, 𝐵) → 𝑆𝑇𝑖 (Γ𝑖 (𝐴, 𝑆𝑇𝑖𝐵) + 𝐴 + 𝐵)

lifts to an incremental structural law

𝑑𝑖 : Γ̄𝑖 (Σ+;∼𝑋0 𝐴, 𝐵) → 𝑆+;∼𝑋𝑇𝑖 (Γ̄𝑖 (𝐴, 𝑆+;∼𝑋𝑇𝑖𝐵) + 𝐴 + 𝐵).

Proof. By Lemma 111, using left-cocontinuity of Γ𝑖, and the fact that ∼𝑋 is enhanced. J

Proof of Proposition 109. By Proposition 34, there exists a distributive law

𝑇𝑛+1𝑆
+;∼𝑋 → 𝑆+;∼𝑋𝑇𝑛+1

and 𝑇𝑛+1 is constant-free, hence the natural transformation 𝑆+;∼𝑋 → 𝑆+;∼𝑋𝑇𝑛+1 is an iso-
morphism at ∅. The proof-relevant Howe closure 𝑅�0 = 𝑆+;∼𝑋 ∅ thus acquires a canonical
𝑆+;∼𝑋𝑇𝑛+1-algebra structure. The terminal object also is one, of course, and the unique
morphism to it is a 𝑆+;∼𝑋𝑇𝑛+1-algebra morphism, which completes the proof of the first point.

The proof-relevant Howe closure is in particular enhanced via

Γ𝑖 (𝑅�0 , 𝑋) → Γ𝑖 (𝑅�0 , 𝑅
�
0) → 𝑅�0 ,

which entails enhancedness for the relational Howe closure by the fact that each Γ𝑖, being
left-cocontinuous, preserves epimorphisms in its first argument, and that all epimorphisms
are strong in presheaf categories. Indeed, we find the desired morphism by lifting as in the
following diagram.

Γ(𝑅�0 , 𝑋0) Γ(𝑅�0 , 𝑅
�
0) 𝑅�0

Γ(𝑅•0, 𝑋0) 𝑅•0

Γ(𝑋2
0 , 𝑋0) Γ(𝑋2

0 , 𝑋
2
0) Γ(𝑋0, 𝑋0)2 𝑋2

0

T. Hirschowitz and A. Lafont 35

J

A final basic property is about symmetry of the relational transitive closure of the
relational Howe closure on the syntactic transition system (Proposition 116 below).

I Definition 113 ([18, Definition 9.5]). The relational transitive closure 𝑅+̄0 of a span
𝑅0 → 𝑋2

0 is the union
⋃
𝑛>0 im(𝑅;𝑛

0), where (−);𝑛 denotes iterated self-composition of spans.

I Proposition 114. For any span 𝑅0 → 𝑋2
0 , the relational transitive closure 𝑅+̄0 is equipped

with an action 𝑅0; 𝑅+̄0 → 𝑅+̄0 over 𝑋2
0 .

The proof relies on the following lemma.

I Lemma 115. In any complete, cocomplete, regular, and locally cartesian closed category,
hence in particular in any presheaf category,

(i) span composition preserves all colimits, on both sides, and
(ii) sequential composition of relations preserves all unions, on both sides.

Proof. The pullback functor (along the relevant projection), being a left adjoint, is cocon-
tinuous, which directly entails the first point. For the second point, in a regular category,
the pullback functor preserves regular epis and monos, hence image factorisations. J

Proof of Proposition 114. We have

𝑅0;
⋃
𝑛>0

im(𝑅;𝑛
0) � im(𝑅0);

⋃
𝑛>0

im(𝑅;𝑛
0) �

⋃
𝑛>1

im(𝑅;𝑛
0) ↩→

⋃
𝑛>0

im(𝑅;𝑛
0),

where the isomorphism holds by Lemma 115(ii). J

I Proposition 116. Let again 𝑋0 = Σ∗0 (∅). Then the relational transitive closure ∅•+̄ of the
proof-irrelevant Howe closure of ∅ is symmetric.

I Lemma 117 ([18, Lemma 9.10]). For any span 𝑅0 → Z2
0, if there exists a span morphism

𝑅0 → 𝑅
+̄†
0 , then 𝑅+̄0 is symmetric.

I Lemma 118. If a span 𝑅 is symmetric, in the sense that there is a morphism 𝑅† → 𝑅

over 𝑋2
0 , then so is its induced relation.

Proof. We proceed as in the following diagram.

𝑅 𝑅

𝑖𝑚𝑅 𝑋2 𝑖𝑚𝑅

𝑋2

𝑠

〈𝜋1 , 𝜋2 〉

𝑒

𝑚
〈𝜋2 , 𝜋1 〉

〈𝜋1 , 𝜋2 〉𝑒

𝑚

〈𝜋2 , 𝜋1 〉◦𝑚

J

Proof of Proposition 116. By the lemma, it suffices to construct a morphism ∅• → ∅•+̄†.
Thus, by Proposition 104, it suffices to endow ∅•+̄† with algebra structure for the endofunctor
𝑆 ↦→ im(Σ+;∼𝑋0 (𝑆)) on Sub(𝑋2

0). For this, because Σ
+;∼𝑋
0 is algebraic, it suffices to endow ∅•+̄†

with Σ
+;∼𝑋
0 -algebra structure.

36 A more general categorical framework for congruence of applicative bisimilarity

We first equip it with (−;∼𝑋)-algebra structure. We need to find a morphism ∅•+̄†;∼𝑋 →
∅•+̄† over 𝑋2

0 , or equivalently by applying the involution (−)†, a morphism ∼𝑋 †; ∅•+̄ → ∅•+̄.
We pick the composite

∼𝑋 †; ∅•+̄ → ∼𝑋 ; ∅•+̄ → ∅•; ∅•+̄ → ∅•+̄,

where
the first morphism is symmetry of ∼𝑋 ,
the second morphism is that of Lemma 108,
the last morphism is the action from Proposition 114.

This leaves us with the task of equipping ∅•+̄† with algebra structure for the lifting of Σ0
to Sub(𝑋2

0), for which it suffices, by algebraicity of Σ0, to equip it with algebra structure for
the lifting of Σ0 to V̂T/𝑋2

0 , say Σ̄0. By [18, Corollary 9.8], we have ∅•+̄† � ∅•†+̄, and by [18,
Lemma 9.9], ∅•†+̄ is the colimit of the chain

𝑋0 → im(∅•†) � im(∅•†; 𝑋0) → im(∅•†; ∅•†) � im(∅•†; ∅•†; 𝑋0) → im(∅•†; ∅•†; ∅•†) → . . .

in V̂T/𝑋2
0 . But Σ̄0 is algebraic, hence the forgetful functor Σ̄0 - alg→ V̂T/𝑋2

0 creates filtered
colimits, hence in particular colimits of chains. It thus suffices to lift the above chain to
Σ̄0 - alg. Furthermore, because all objects of the chain are relations, they are subterminal,
hence all morphisms will automatically lift to Σ̄0 - alg if the objects do. Finally, the forgetful
functor Σ̄0 - alg→ V̂T/𝑋2

0 creates limits, and ∅• possesses Σ0-algebra structure by Lemma 108,
hence so does ∅•†. J

To conclude this section, we use the basic facts we just proved to reduce the main result
to the fact that ∅• is a flexible simulation.

I Proposition 119. Consider any syntactic signature d = (Σ, (Γ𝑖 , 𝑑𝑖)𝑖∈𝑛), and suppose that
∅•Z is a flexible simulation. Then enhanced bisimilarity on Z is a congruence.

I Remark 120. Let us recall that by Definition 74, 𝑅0 → 𝑋2
0 in V̂T is a flexible simulation

when its cartesian lifting 𝑅⇑0 → 𝑋2 is.
We will rely on the following lemmas.

I Lemma 121. Consider any commutative diagram of functors between locally small categories

A B

C

𝑈

𝑉 𝑊

If 𝑉 and 𝑊 create colimits of a certain shape 𝐷, and 𝑊 preserves them (typically if C has
them), then 𝑈 creates them.

Proof. Consider any functor 𝐽 : 𝐷 → A and colimiting cocone 𝐾 : 𝐷> → B for 𝑈 ◦ 𝐽. Because
𝑊 preserves colimits of shape 𝐷, 𝑊 ◦ 𝐾 is colimiting for 𝑊 ◦𝑈 ◦ 𝐽, hence because 𝑉 creates
colimits, we find a unique lifting 𝐽↑ such that 𝐽↑ ◦ 𝐼 = 𝐽 and 𝑉 ◦ 𝐽↑ = 𝐿 := 𝑊 ◦ 𝐾, as in the
following diagram.

𝐷 A B

𝐷> C C

𝑈

𝐼

𝐽

𝐾

𝐿

𝐽↑ 𝑉
𝑊

T. Hirschowitz and A. Lafont 37

But now 𝑈 ◦ 𝐽↑ and 𝐾 both are candidate liftings for the outer rectangle, so by uniqueness in
the creation of colimits by 𝑊 they are equal, and thus 𝐽↑ is a lifting for the original square
(𝐽, 𝐾).

Furthermore, any lifting for (𝐽, 𝐾) induces one for (𝐽, 𝐿), hence should be equal to 𝐽↑,
which proves uniqueness.

Finally, 𝐽↑ is colimiting because 𝑉 creates colimits of shape 𝐷. J

I Definition 122. Given a bifunctor Γ : C2 → C and an object 𝑋, a (Γ, 𝑋)-premodule is
an object 𝑀 equipped with an action, i.e., a morphism 𝑟 : Γ(𝑀, 𝑋) → 𝑀. A morphism of
(Γ, 𝑋)-premodules is a morphism commuting with action. We let (Γ, 𝑋) - Mod denote the
category of (Γ, 𝑋)-premodules.

I Terminology 1. When Γ is clear from context, we often omit it and talk about 𝑋-premodules
and 𝑋 - Mod.

I Remark 123. An enhanced span 𝑅 → 𝑋2 as in Definition 29 is a span in the category of
𝑋-premodules.

I Lemma 124. If Γ is left-cocontinuous and C is locally finitely presentable and regular, then
the category 𝑋 - Mod is regular and the forgetful functor 𝑋 - Mod→ C creates all limits and
colimits, as well as image factorisations.

Proof. Creation of limits and colimits follows easily from the fact that 𝑋 - Mod is the category
of algebras for the cocontinuous endofunctor Γ(−, 𝑋).

In particular, 𝑋 - Mod is complete and cocomplete, hence regularity reduces to showing
that regular epis are stable under pullback.

Let us first appeal to [18, §1.6.5] for definitions and preliminary results about images.
Notably, in a locally finitely presentable category, (strong epi)-mono factorisations yield
image factorisations, and union may be computed by cotupling followed by (strong epi)-mono
factorisation.

Let us then consider any pullback square

𝐴 𝐵

𝐶 𝐷

𝑢

𝑣

𝑔

𝑓

in 𝑋 - Mod, with 𝑓 a regular epi, and show that 𝑣 must also be a regular epi. By creation,
hence preservation, of limits and colimits, the given pullback square is also a pullback in C
and 𝑓 is a regular epi there too. So by regularity of C, 𝑣 is a regular epi in C. Equivalently,
it is a coequaliser of its kernel pair. But by creation of limits the kernel pair uniquely lifts to
a kernel pair in 𝑋 - Mod, and by creation of colimits 𝑣 is a coequaliser there too. This shows
that 𝑋 - Mod is regular.

Finally, let us prove that the forgetful functor creates image factorisations. Given
𝐴,𝐶 ∈ 𝑋 - Mod, let us consider any image factorisation 𝐴

𝑒
𝐵

𝑚
𝐶 in C of a morphism

𝑓 : 𝐴→ 𝐶 in 𝑋 - Mod, i.e., 𝑒 is a regular epi and 𝑚 is a mono in C. In this situation, 𝑒 is the
coequaliser of its kernel pair in C, but, as we just saw, this kernel pair lifts to a kernel pair in
𝑋 - Mod, whose coequaliser is created by the forgetful functor, hence 𝑒 is a coequaliser, hence
a regular epi in 𝑋 - Mod. Finally, 𝑓 also coequalises the kernel pair, hence the existence of
a unique mediating morphism 𝐵 → 𝐶 in 𝑋 - Mod, which must be 𝑚 by faithfulness of the
forgetful functor 𝑋 - Mod→ C. Thus, 𝑚 is also a morphism in 𝑋 - Mod. Finally, its monicity
follows again by faithfulness of the forgetful functor. J

38 A more general categorical framework for congruence of applicative bisimilarity

I Lemma 125. If C is regular, then enhanced spans are stable under images, that is if
𝑝 : 𝑅 → 𝑋2 is enhanced, then so is im(𝑝) : im(𝑅) ↩→ 𝑋2.

Proof. By Lemma 124 (creation of image factorisations). J

I Lemma 126. The forgetful functor 𝑋 - Mod/𝑋2 → C/𝑋2 creates colimits. Hence, in
particular (by cocompleteness of C/𝑋2), enhanced spans are closed under all colimits in
C/𝑋2.

Proof. Consider the following commutative diagram in CAT.

𝑋 - Mod/𝑋2 C/𝑋2

𝑋 - Mod C

Colimits are created by both (vertical) projection functors, and also by the bottom functor by
Lemma 124. Furthermore, C being cocomplete, the projection functor C/𝑋2 → C preserves
all colimits, hence by Lemma 121 the top functor creates them. J

I Lemma 127. For any syntactic signature d = (Σ, (Γ𝑖 , 𝑑𝑖)𝑖∈𝑛) and 𝑋 ∈ 𝜎(d) -Trans, if
𝑅0 ↩→ 𝑋2

0 in V̂T is a reflexive, enhanced flexible simulation relation, then so is 𝑅+̄0.

Proof. Reflexivity is clear. For enhancedness, we have seen in Lemmas 125 and 126 that
enhanced spans are closed under images and coproducts. Furthermore, closedness under span
composition follows directly by Lemma 111. Finally, in order to show that 𝑅+̄0 is a flexible
simulation, we adopt the characterisation of [18, Lemma 9.9], by which 𝑅+̄0 is the colimit of
the chain

𝑋0 → im(𝑅0) � im(𝑅0; 𝑋0) → im(𝑅0; 𝑅0) � im(𝑅0; 𝑅0; 𝑋0) → im(𝑅0; 𝑅0; 𝑅0) → . . .

in V̂T/𝑋2
0 . By Corollary 80, it suffices to show that each im(𝑅;𝑛

0) is a flexible simulation. By
Lemma 84, it further suffices to show that each 𝑅

;𝑛
0 is a flexible simulation. By induction

and Lemma 82, it finally suffices to show that 𝑅0 is a flexible simulation, which it is by
hypothesis. J

Proof of Proposition 119. By hypothesis ∅• is a flexible simulation. It is also enhanced
by Proposition 109. Let now 𝑅0 := ∅•+̄, which is again a flexible enhanced simulation
by Lemma 127. By Proposition 116, 𝑅0 is moreover symmetric. But any symmetric
simulation is in fact a bisimulation, so 𝑅0 is a flexible enhanced bisimulation. Furthermore,
𝑅0 contains ∼Z by Lemma 108(iv), and is a congruence by Lemma 108(i). We thus conclude
by Corollary 101. J

A.5 The key lemma
We at last introduce the key lemma, which will directly lead us to a proof of Theorem 52.

I Lemma 128. For any syntactic signature d = (Σ, (Γ𝑖 , 𝑑𝑖)𝑖∈𝑛), if Σ1 preserves functional
flexible bisimulations, then the cartesian lifting ∅•⇑Z of ∅•Z is a flexible simulation.

Before proving the lemma, let us prove the main theorem, as promised:

Proof of Theorem 52. By Proposition 119, it suffices to prove that ∅•Z is a flexible simulation,
which is the case by Lemma 128. J

T. Hirschowitz and A. Lafont 39

The rest of this section is a proof of Lemma 128.

I Notation 8. We abbreviate ∅�Z to ∅� and ∼𝜎 (d)Z to ∼.

In order to prove that ∅•Z is a simulation, it suffices to prove that ∅�Z is, by Lemma 68.
Briefly, we will construct an 𝜔-chain of flexible simulations of the form

Σ̌𝑛1 (Z0) ← 𝑅𝑛 → Z,

whose projection to V̂T is the constant chain on

Z0 ← ∅� → Z0. (6)

By construction, the colimit of this chain will be a flexible simulation

Z← 𝑅∞ → Z

with projection
Z0 ← ∅� → Z0,

which entails by Lemma 70 that ∅� is a flexible simulation as desired.
For this, let us construct a category whose objects are spans of a similar form.

I Definition 129. Let Span/∅� denote the limit of the diagram

ÊT/ΔZ0
ÊT/Δ𝜋1←−−−−−− ÊT/Δ∅�

ÊT/Δ𝜋2−−−−−−→ ÊT/ΔZ0
Z←− 1

weighted by
2

0←− 1 0−→ 2
1←− 1

I Remark 130. A weighted cone from some category 𝐴 is thus a diagram of the form

𝐴 1

ÊT/ΔZ0 ÊT/Δ∅� ÊT/ΔZ0
ÊT/Δ𝜋1 ÊT/Δ𝜋2

Z
𝑌

𝑋

!

Hence, objects of the weighted limit are spans of the form 𝑌 ← 𝑋 → Z over (6), and a
morphism from such a span to some span 𝑌 ′← 𝑋 ′→ Z is a pair (𝑔 : 𝑌1 → 𝑌 ′1, 𝑓 : 𝑋1 → 𝑋 ′1)
of morphisms in ÊT making the following diagram commute.

𝑌1 𝑋1 Z1

𝑌 ′1 𝑋 ′1

ΔZ0 Δ∅� ΔZ0

𝑓𝑔

I Proposition 131. The forgetful functor to ÊT
2

mapping any span 𝑌 ← 𝑋 → Z to (𝑌1, 𝑋1)
creates colimits and connected limits.

Proof. Straightforward. J

40 A more general categorical framework for congruence of applicative bisimilarity

I Proposition 132. The category Span/∅� has as initial object the span Z0 ← ∅� → Z.

Since Z0 = Σ̌𝑛1 (Z0), this span has the desired form, and its left-hand leg is trivially a
functional flexible bisimulation, so we may take it as our 𝑅0.

I Definition 133. Let 𝐹 denote the endofunctor on Span/∅� that maps any object

𝑌1 𝑋1 Z1

ΔZ0 Δ∅� Z0

to

Σ1 (𝑌)1 Σ1 (𝑋)1; (∼∗)↑ Z1

Δ2,s,l,t (Σ?
0 (Z0),Z0) Δs (Σ?

0 (∅�);∼∗) × Δl (∅�; Z0) × Δt (∅�;∼∗) Δ2,s,l,t (Σ?
0 (Z0),Z0)

ΔZ0 Δ∅� Z0.

I Definition 134. Let 𝑅𝑛 be the initial 𝐹-chain.

I Lemma 135. The endofunctor 𝐹 preserves flexible simulations.

Proof. Given any span 𝑌 ← 𝑋 → Z over (6), the left leg of its image under 𝐹 is functional
flexible simulation iff the following pasting is a pointwise weak pullback.

Σ1 (𝑋)1; (∼∗)↑ Σ1 (𝑋)1 Σ1 (𝑌)1

Δs (Σ?
0 (∅�);∼∗) × Δl (∅�; Z0) Δ2,s,l (Σ?

0 (∅�), ∅�) Δ2,s,l (Σ?
0 (Z0),Z0)

Δs,l∅� Δs,lZ0

For this, by [18, Lemma 9.26,(i)], it suffices to prove that all three inner polygons are
pointwise weak pullbacks. The top right square is a pointwise weak pullback because Σ1
preserves functional flexible bisimulations. The top left square also is a pointwise weak
pullback, as the left face of the following cube.

Σ1 (𝑋)1; (∼∗)↑ (∼∗)↑

Σ1 (𝑋)1 Z1

Δs (Σ?
0 (∅�);∼∗) × Δl (∅�; Z0) Δs (∼∗) × Δl (Z0)

Δ2,s,l (Σ?
0 (∅�), ∅�) Δs,l (Z0)

T. Hirschowitz and A. Lafont 41

Indeed, the top and bottom faces are pullbacks by construction, and the right face is a
pointwise weak pullback because ∼∗ is a bisimulation. The left face being a pointwise weak
pullback thus follows by [18, Lemma 9.26,(i)].

Finally, for the bottom rectangle, its domain is

Δs (Σ?
0 (∅�);∼∗) × Δl (∅�; Z0) � Δs (Σ?

0 (∅�);∼∗) × Δl (∅�)
� Δs (Σ0 (∅�);∼∗ +∅�;∼∗) × Δl (∅�)
� (Δs (Σ0 (∅�);∼∗) + Δs (∅�;∼∗)) × Δl (∅�)
� Δs (Σ0 (∅�);∼∗) × Δl (∅�) + Δs (∅�;∼∗) × Δl (∅�)
� Δ2,s,l ((Σ0 (∅�);∼∗), ∅�) + Δ2,s,l ((∅�;∼∗), ∅�).

Similarly, we have Δ2,s,l (Σ?
0Z0,Z0) � Δ2,s,l (Σ0Z0,Z0) + Δ2,s,l (Σ?

0Z0,Z0). The rectangle is thus
obtained by applying Δ2,s,l to the (vertical) copairing of the following two squares.

Σ0 (∅�);∼∗ Σ0Z0

∅� Z0

� �

∅�;∼∗ Z0

∅� Z0

Because pointwise weak pullbacks are closed under (vertical) copairing and preserved by
Δ2,s,l, it thus suffices to show that both squares are pointwise weak pullbacks. The left square
is one as an isomorphism in the arrow category. The right square is one because it admits a
cone morphism from the actual pullback, using reflexivity of ∼∗ as in

∅�

∅�;∼∗ Z0

∅� Z0.

J

B Proof of Theorem 61

We assume some basic knowledge of familial functors. In particular, there is a well-known
alternative characterisation in terms of generic-free factorisation, across which border
arities are characterised as follows.

I Proposition 136. In the setting of Definition 60, for any 𝛼 ∈ ET and 𝑟 ∈ 𝒰
′
2Σ1 (1) (𝛼),

the border arity b𝑟 is isomorphic to the morphism 𝜑 obtained by first factoring 𝑟 as y𝛼
𝜉𝑟−−→

𝒰
′
2Σ1 (𝐵)

𝒰
′
2Σ1 (!)−−−−−−→ 𝒰

′
2Σ1 (1) with 𝜉𝑟 generic, and then 𝜉𝑟 ◦ 𝑗2,𝛼 as 𝐹 (𝜑) ◦ 𝜒𝑟 with 𝜒𝑟 generic.

ys(𝛼)𝐷 +
∑
𝑖∈𝑛𝛼 y(l𝛼

𝑖
)𝑉 y𝛼

𝒰
′
2 (Σ1 (𝐴)) 𝒰

′
2 (Σ1 (𝐵))

𝑗2,𝛼

𝜒𝑟

𝒰
′
2 (Σ1 (𝜑))

𝜉𝑟

42 A more general categorical framework for congruence of applicative bisimilarity

I Lemma 137. For any categories with generating cofibrations (𝒜,J) and (ℬ,K), a familial
functor 𝐹 : 𝒜 →ℬ preserves fibrations iff it is cellular, in the sense that for all commuting
squares

𝐶 𝐷

𝐹 (𝑋) 𝐹 (𝑌)

𝑘

𝜉

𝐹 (𝛿)

𝜒 (7)

with 𝑘 ∈ K and 𝜉 and 𝜒 generic, 𝛿 is a cofibration (i.e., 𝛿 ∈ t (Jt)).

Proof. This is a straightforward generalisation of [18, Lemma 7.28], whose proof applies
mutatis mutandis. J

Proof of Theorem 61. We assume given a dynamic signature Σ1 : 𝜎 -Trans → 𝜎 -Trans2

such that 𝒰2Σ1 is familial. By that that By Proposition 59, Σ1 preserves functional flexible
bisimulations if and only if 𝒰2Σ1 maps J𝜎-fibrations to J2,𝜎-fibrations, or equivalently, by
Lemma 137, if it is cellular.

Clearly, 𝒰2Σ1 is cellular, then the border arities of all rules are J𝜎-cofibrations, by
a straightforward instantiation of Diagram 7. Conversely, assume that all rules are J𝜎-
cofibrations and consider a commuting square as in Diagram 7, taking 𝐹 = 𝒰2Σ1, specialised
to the involved sets of cofibrations:

ys(𝛼)𝐷 +
∑
𝑖∈𝑛𝛼 y(l𝛼

𝑖
)𝑉 y𝛼

𝐹 (𝐴) 𝐹 (𝐵).

𝑗2,𝛼

𝜒𝑟

𝐹 (𝜑)

𝜉𝑟

The result follows by considering the rule y𝛼
𝜉𝑟−−→ 𝐹 (𝐵)

𝐹 (!)
−−−→ 𝐹 (1) and exploiting uniqueness

(up to isomorphism) of generic factorisations [18, Remark 7.19]. J

	1 Introduction
	2 Overview
	2.1 Transition systems
	2.2 Algebraic transition systems and enhanced bisimilarity
	2.3 Operational signatures
	2.4 Congruence of enhanced bisimilarity

	3 A concrete example
	4 Transition systems in the abstract
	4.1 Howe contexts
	4.2 Generalised transition systems
	4.3 Bisimulation and bisimilarity

	5 Algebraic transition systems
	5.1 Enhanced syntax
	5.2 Algebraic transition systems
	5.3 Enhanced bisimilarity

	6 Signatures for operational semantics
	6.1 Syntactic signatures for enhanced syntax
	6.2 Dynamic signatures
	6.3 Congruence of enhanced bisimilarity
	6.4 Preservation of functional flexible bisimulations

	7 Conclusion and perspectives
	A Proof of Theorem 52
	A.1 Basic properties of flexible bisimulation
	A.2 Composition of flexible and rigid simulations
	A.3 Fundamental property of flexible bisimulation
	A.4 Howe closure: basic properties
	A.5 The key lemma

	B Proof of Theorem 61

