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Abstract. We propose a new approach to initial-algebra semantics for
dependent type theories in locally presentable categories. Concretely, we
list a handful of fundamental constructions (most of them well known) of
locally presentable categories, right adjoint functors between them, and
natural transformations between those. We then show how to compose
these fundamental contructions in order to recover categories of models
for dependent type theories, including Gratzer et al.’s multimodal type
theory, as well as Uemura’s second-order generalised algebraic theories.

1 Introduction

1.1 Motivation

Cartmell [8] introduced generalised algebraic theories (GATs) as a device for
presenting dependent type theories and their categories of models, in the spirit
of initial-algebra semantics [17,16]: each GAT generates a category of “models”,
and the presented type theory is implicitly defined as “the” initial object therein.

Furthermore, Cartmell showed that such categories of models are locally
presentable [15,2,28], and conversely that any locally presentable category is
presented by some GAT.

After Cartmell, one of the main reasons for continuing the research was that
GATs are rather low-level, thus making it tedious to present even mildly complex
type theories. Notably, dependent type theories always come with some notion
of capture-avoiding substitution, which GATs make no attempt at automating.
E.g., specifying a type constructor like dependent product requires many com-
ponents: the type and term constructors (in any context), the eliminator with
associated reduction rules or equations, as well as equations stating that these
operations are compatible with substitution.

Recently, a few approaches have managed to improve the situation, in two
complementary ways.

– First, they build substitution into operation arities [34,19,10,13]. E.g., the
dependent product type constructor may be defined as a mere operation of
arity (ty → ty) → ty – its behaviour w.r.t. substitution follows.

– Moreover, some of them handle what Coraglia and Di Liberti call extensional
type constructors [10, Section 3.7]. These are defined in a very compact way
by requiring a well-chosen pair of (generally non-parallel) morphisms to be
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completed into a pullback square, as, e.g., in Fig. 2(left) below. Features that
may be specified in this way include extensional identity types, dependent
products, and dependent sums.

Built-in substitution and extensional type constructors significantly simplify the
task of specifying a type theory.

1.2 Contribution

In this paper, we present a new approach to initial-algebra semantics for de-
pendent type theories, which features built-in substitution and extensional type
constructors.

A surprising feature is that our approach mostly relies on standard results
from locally presentable category theory.

More specifically, we show that the categories of models of a few “typical”
dependent type theories may be reconstructed from first principles using only a
handful of standard 2-categorical constructions, under which locally presentable
categories are (mostly) known to be closed in CAT, the 2-category of locally
small categories.

We demonstrate the expressiveness of our approach by (1) exhibiting a re-
construction of Gratzer et al.’s [18] multimodal type theory and (2) interpreting
SOGATs in our framework. Multimodal type theory is a typical example that
SOGATs cannot handle, so (1) shows that our framework is more expressive.

1.3 Related work

Let us compare our approach with already mentioned high-level ones [34,19,10,13].
A first difference is that they do biinitial-algebra semantics, not initial-algebra
semantics. Indeed, in all of these approaches, the models of any signature form a
2-category. Accordingly, the specified dependent type theory is a biinitial object.
This is a refinement of initial objects, in which the category of morphisms from
the biinitial object to any object is equivalent to 1, as opposed to isomorphic.

Kaposi and Xie [22] recently provided a translation of Uemura’s [34] SO-
GATs into GATs, hence indirectly equipped SOGATs with proper initial-algebra
semantics. Our §4 may be viewed as an alternative route to the same goal, which
avoids resorting to GATs.

A further difference between our approach and other high-level ones is that,
in all of them, each signature gives rise to a theory, i.e., somed kind of structured
category modelling the syntactic constructions inherent in dependent type the-
ory, which is then used to construct the category of models. These are categories
with representable maps in Uemura [34], locally cartesian closed categories in
Gratzer and Sterling [19], and lex 2-categories in Di Liberti et al. [10,13]. This is
in fact also true in Cartmell’s work, theories being his contextual categories [8].
Our approach avoids the need for a notion of theory altogether.

In less closely related work, let us mention the recent work by Bourke and
Garner [7] and the references therein, which also contains general constructions
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of locally presentable categories. To our knowledge, such approaches have not
been applied to specifying dependent type theories. Notably, they do not feature
built-in substitution or extensional type constructors.

Finally, we drew some initial inspiration from Altenkirch et al. [1].

1.4 Overview

Before diving into technical details, let us present the big picture. We first sketch
our approach to constructing categories of models for dependent type theories,
and then briefly touch upon the issue of local presentability.

tm ty

C

proj

𝜋ty𝜋tm

Constructing categories of models for dependent
type theories A core notion for models of depen-
dent type theories is Awodey’s category of natural mod-
els [3,34]. A natural model consists of a “base” category
C, two discrete fibrations 𝜋ty : ty → C and 𝜋tm : tm → C
over it, a functor proj : tm → ty over C as on the right, together with a right
adjoint var ⊢ proj (not necessarily over C).

Remark 1. We can additionally require the existence of a terminal object in C,
thought of as the empty context. We deal with it in Example 2.

Let us sketch our construction of the category of natural models. We will
later show that all the constructions ensure local presentability.

(a) We first construct the category DFib2
𝑣 whose objects consist of a small cat-

egory C, together with discrete fibrations 𝜋ty : ty → C and 𝜋tm : tm → C on it,
and a functor proj : tm → ty over C, as above right.
(b) This category admits a forgetful functor dom2 : DFib2

𝑣 → Cat2, the category
of morphisms in Cat, mapping any object (C, ty , tm , proj ) to proj .
(c) We then construct the category Catadj, whose objects are adjunctions be-
tween small categories.
(d) This category also admits a forgetful functor to Cat2, which maps any ad-
junction to the left adjoint.
(e) Finally, we define NatMod as the pullback below left. An object thus consists

NatMod

DFib2
𝑣 Cat2

Catadj

dom2

Cat𝜕adj

DFib□lim
𝑣NatModΠ

NatMod DFib2+2
𝑣

Fig. 1. Example constructions of categories of models
of an object (C, ty , tm , proj ) ∈ DFib2

𝑣 , together with a right adjoint to proj , as
desired.

Now that we have constructed the category of natural models of dependent
type theory, let us sketch how to refine it to account for dependent products.
A particularly efficient way of saying that a natural model (C, ty , tm , proj , var )
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(with proj ⊣ var) has dependent products is using extensional type construc-
tors [10, Section 3.7]. This amounts to (1) computing an “arity” object 𝔓(proj )
of DFib2

C, and then (2) requiring the existence of a morphism (𝜆,Π) : 𝔓(proj ) →
proj making the square below left a pullback [34, §3.3]. The endofunctor 𝔓 is

𝔓(tm)

𝔓(ty)

tm

ty

𝔓(proj ) proj

𝜆

Π

DFib2
C

ext∗−−−−→ DFib2
ty

𝜋
ty
!−−−→ DFib2

C

Fig. 2. Extensional type constructor for dependent product
defined as the composite above right, where

– ext , thought of as context extension, is the composite ty
var−−−→ tm

𝜋tm

−−−→ C,
– ext∗ denotes pullback along it, and
– 𝜋

ty
!

denotes post-composition with 𝜋ty : ty → C.

In order to add such structure to the objects of NatMod, we proceed as follows.

(a) We construct a category DFib2+2
𝑣 , whose objects consist of a small category

C, together with a pair of morphisms of discrete fibrations over C.
(b) We define the functor NatMod→ DFib2+2

𝑣 sending any natural model (C, ty ,
tm , proj , var ) to the pair of solid morphisms in Fig. 2(left) above.
(c) We define the category DFib□lim

𝑣 , whose objects consist of a small cate-
gory C, together with a pullback square in DFibC. We have a forgetful functor
DFib□lim

𝑣 → DFib2+2
𝑣 .

(d) Finally, we define NatModΠ as the pullback of the last two functors, as in
Fig. 1(right). An object is a natural model, together with morphisms 𝜆 and Π

making the above square commutative into a pullback, i.e., a model of dependent
type theory with dependent products.

Local presentability Let us now briefly sketch the tools needed to ensure that
the categories of models, constructed as above, are locally presentable.

For this, we rely on a list of mostly known constructions of categories (resp.
functors), under which local presentability (resp. right adjointness) are preserved.

The first, obvious construction that we used is the pullback. For this, we ex-
ploit the well-known result that the sub-2-category RLPCAT ↩→ CAT spanned
by locally presentable categories, right adjoints between them, and all natural
transformations, is closed under pullbacks, provided one of the legs is an isofi-
bration (see Definition 1 below). In order to apply this to both pullbacks we took
above (in CAT), we show that (1) the bottom morphism lives in RLPCAT, and
(2) the right-hand morphism lives in IRLPCAT, the sub-2-category of RLPCAT
spanned by isofibrations.

The first thing to check is of course that all involved categories in Fig. 1 are
locally presentable. Roughly, the ingredients for this are the category DFib of
discrete fibrations, and exponentiation by a small category.
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(a) For showing that DFib is locally presentable, we observe that it may be de-
fined by orthogonality from Cat2. It thus suffices to prove that locally presentable
categories are closed under taking orthogonality classes and exponentiation by
small categories. Both facts are indeed known.
(b) We actually need a 2-categorical generalisation of the exponentiation result
for the case of Catadj (Fig. 1, left).
(c) Furthermore, we observe that the category DFib2

𝑣 and its variants DFibC
𝑣 for

some small category C, may be reconstructed by further pullbacks from DFib
and categories of the form CatC for small C.
(d) Finally, DFib□lim

𝑣 is in fact equivalent to DFib2
⊤
𝑣 , where 2⊤ denotes the free-

standing cospan.

At this point, we know that all categories occurring in Fig. 1 are locally
presentable. Now, how about the functors?

For right-hand functors, the result about exponentiation by small (2-)cate-
gories extends to exponentiation by (2-)functors 𝐹 between such (2-)categories.
Any functor obtained in this way lives in RLPCAT, and is an isofibration when
𝐹 is injective on objects. This covers all cases, except DFib□lim

𝑣 → DFib2+2
𝑣 . But

this one factors as DFib□lim
𝑣 → DFib□𝑣 → DFib2+2

𝑣 . The second factor lives in
IRLPCAT by the results on pullback and exponentiation, and we prove sepa-
rately that the first factor does so too.

Let us now turn to bottom functors in Fig. 1. Their construction may be
broken down a little by the above-mentioned result on pullbacks: we exhibit an
isomorphism DFib2+2

𝑣 � DFib2
𝑣×CatDFib2

𝑣 of categories, which enables us to break
down the bottom functor of Fig. 1(right) as a pairing of two functors, one of which
is an identity. The other functor maps any natural model (C, ty , tm , proj , var ) to
𝔓(proj ). Recalling Fig. 2(right), this is defined by pulling back proj along ext ,
and then post-composing with 𝜋ty .

First of all, pulling back any discrete fibration 𝑝 : 𝐸 → 𝐵 along some func-
tor 𝑓 : 𝐴 → 𝐵 to its base may be viewed as reindexing 𝑝 along 𝑓 for the
codomain fibration cod : DFib → Cat. Thus, e.g., reindexing ty along ext for
each (C, ty , tm , proj , var ) is implemented 2-categorically by the cartesian lifting
below left.

NatMod

Cat

DFib

NatMod

ctx
dom

ty

ext∗ (ty)

ty

ext NatMod

Cat

DFib

NatMod

ctx

𝜋
ty
!
ext∗ (ty)

ext∗ (ty)

ty

𝜋ty

(1)

Similarly, the “common codomain” functor cod : DFib2
𝑣 → Cat is a fibration,

and mapping each natural model (C, ty , tm , proj , var ) to proj forms a functor
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U : NatMod → DFib2
𝑣 , which we may reindex along ext just as before to get

ext∗ (proj ).
This 2-categorical reconstruction of pulling back along ext allows us to prove

local presentability. Indeed, Street [30] introduced a notion of fibration internal
to a given 2-category. By showing that RLPCAT is closed under cartesian lifting
in this sense, we are able to prove that ext∗ (U) lives in RLPCAT.

Postcomposition with 𝜋ty is subtler. Indeed, postcomposing a discrete fibra-
tion 𝑝 : 𝐸 → 𝐵 with some functor 𝑓 : 𝐵 → 𝐶 can not in general be viewed
as opreindexing for the opfibration cod : DFib → Cat. Indeed, opreindexing is
rather performed using the comprehensive factorisation system [31]. However,
when the functor 𝑓 is also a discrete fibration, then the composite is again a
discrete fibration, hence does indeed provide an opreindexing. In this situation,
the opreindexing does lift to RLPCAT.

To make this formal, we introduce a notion of opfibration relative to some
2-cell in a 2-category. We then establish a result for transferring opfibration
structure in CAT to relative opfibration structure in RLPCAT. E.g., we may use
this transfer result to show that the codomain functor DFib→ Cat in CAT is an
opfibration in RLPCAT, relative to natural transformations whose components
are discrete fibrations. This allows us to establish that the opcartesian lifting on
the right in (1) lives in RLPCAT. For each (C, ty , tm , proj , var ), the opcartesian
lifting returns the composite 𝜋ty ◦ ext∗ (ty), as desired. Similarly, the functor
DFib2

𝑣 → Cat is an opfibration relative to natural transformations whose com-
ponents are discrete fibrations, and the opcartesian lifting of ext∗ (U) along 𝜋ty
lives in RLPCAT, and acts as desired: it maps (C, ty , tm , proj , var ) to 𝔓(proj ).

By cartesian, and then opcartesian lifting, we have reconstructed the crucial
functor NatMod→ DFib2

𝑣 , and showed it lives in RLPCAT as desired.

Applications After setting up all these constructions, using plain dependent
type theory as a running example, we demonstrate their wide applicability by
(1) reconstructing the category of models for Gratzer et al.’s multimodal de-
pendent type theory [18], and (2) constructing a category of models for each of
Uemura’s SOGATs [34].

1.5 Plan

We start in §2 by presenting our 2-categorical constructions and stating the
results on their preserving local presentability. We then move on to our more
substantial applications, multimodal type theory (§3) and SOGATs (§4). Finally,
we conclude and give some perspective in §5.

1.6 Notation and preliminaries

We assume some good knowledge of basic category theory [27], as well as of no-
tions of Grothendieck (op)fibration and (op)cartesian lifting [20]. (We sometimes
mention some basic enriched [23] and 2-dimensional [26] aspects, but skipping
them should not affect reading.)
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Notation 1. Let Set and Cat denote the categories of small sets and categories,
respectively, while CAT denotes the large category of locally small categories.
When dealing with 2-categories, we sometimes write ◦0 for composition along
objects for disambiguation. Finally, 2 denotes the free-standing arrow.

2 Locally presentable toolkit

In this section, we present a detailed version of the constructions mentioned in
the introduction as preserving local presentability.

2.1 Locally presentable categories

Let us start by recalling the basics of locally presentable categories. We treat
the theory like a complete black box, merely giving references to proofs in the
literature. Let us recall from the introduction:

Notation 2. We denote by RLPCAT the 2-category of locally presentable cate-
gories, right adjoint functors, and all natural transformations.

Let us record a few basic facts about locally presentable categories, all easy
or mentioned in [2].

Proposition 1.

1. The categories Set and Cat are locally presentable.
2. Locally presentable categories are closed in CAT under equivalences of cate-

gories.
3. Any functor between locally presentable categories is a right adjoint iff it is

accessible and continuous.
4. A functor from a locally presentable category to Set is a right adjoint iff if

it is representable.

Here is a harder, yet well known result:

Proposition 2 ([4, Theorem 2.18]). The forgetful 2-functor RLPCAT ↩→
CAT creates products, cotensors, and comma categories (as well as inserters,
equifiers, and idempotent splittings).

Finally, we introduce the sub-2-category of IRLPCAT and state the an-
nounced result about pullbacks.

Definition 1. A functor 𝐹 : 𝐴 → 𝐵 is an isofibration, or is isofibrant iff, for
any isomorphism 𝑗 : 𝑏 → 𝐹 (𝑎), there exists an isomorphism 𝑗 ′ : 𝑎′ → 𝑎 such that
𝐹 ( 𝑗 ′) = 𝑗 . Let IRLPCAT denote the wide sub-2-category of RLPCAT spanned
by right adjoint isofibrations and all natural transformations.
The first, central yet well known result is:

Proposition 3. For any pullback in CAT as below with 𝐹 ∈
RLPCAT and 𝐺 ∈ IRLPCAT, we have 𝑃 ∈ IRLPCAT and
𝑄 ∈ RLPCAT.

P

A C

B

𝐹

𝐺𝑃

𝑄
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2.2 Cotensoring

In this subsection, we sharpen the cotensoring part of Proposition 2. We have two
versions of it, one is 2-dimensional but limited1 to Cat, the other is 1-dimensional
but generalised to arbitrary locally presentable categories:

Proposition 4.

1. For any small category V and locally presentable category C, the category
CV of functors from V to C is locally presentable and is characterised by the
following natural isomorphism of categories, for all D ∈ RLPCAT.

RLPCAT(D,CV) � CAT(V,RLPCAT(D,C))

2. For any small 2-category K, the category CatK of 2-functors from K to Cat
and 2-natural transformations is locally presentable and is characterised by
the following natural isomorphism of categories,

RLPCAT(C,CatK) � | [K, [C,Cat]r] |

where [−,−] denotes the hom-2-category of 2-functors, 2-natural transforma-
tions, and modifications, the r subscript indicates a restriction to 2-functors
whose underlying 1-functor is a right adjoint, and |−| takes the underlying
1-category.

The above characterisations entail the following results (except for the injective-
on-objects condition for isofibrations).

Proposition 5.

1. For any functor 𝐹 : K → L between small categories and 𝐺 : C → D in
RLPCAT, the functor 𝐺𝐹 : CL → DK lives in RLPCAT. It is furthermore
an isofibration when 𝐺 is, and 𝐹 is injective on objects.

2. For any 2-functor 𝐹 : K→ L between small 2-categories, the restriction func-
tor CatL → CatK lives in RLPCAT. It is furthermore an isofibration when
𝐹 is injective on objects.

Let us use this to substantiate some claims from the introduction.

Notation 3. Let adj denote the free-standing adjunction and 𝜕adj : 2 ↩→ adj
denote the embedding of the free-standing arrow as the left adjoint.

Example 1. The restriction functor 𝜕∗adj : Cat
adj → Cat2 lives in IRLPCAT.

Example 2. We reconstruct Awodey’s version [3] of categories with families [14],
which are natural models whose base has a terminal object. We start by taking
the pullback below right, where the bottom functor maps any C to the unique
functor C→ 1. We then take the below left pullback.
1 Cat could be replaced by any locally presentable category in the Cat-enriched sense.



Title Suppressed Due to Excessive Length 9

Cat1

Cat Cat2

Catadj

𝜕∗adj

CwF

NatMod Cat

Cat1

We further exploit the result for dealing with limiting diagrams.

Definition 2. For any small category C, let C⊥ denote the category obtained
from C by freely adding an initial object.

Lemma 1. For any categories C and E, diagrams C⊥ → E are in one-to-one
correspondence with pairs of a diagram C→ E and a cone over it.

Proposition 6. For any small C and locally presentable E, the full subcategory
embedding E(C⊥ )lim → EC⊥ spanned by limit cones, lives in IRLPCAT.

Proof (sketch). We have E(C⊥ )lim ≃ EC, and the embedding EC → EC⊥ is given
by right Kan extension, which is a right adjoint by definition.

Example 3. Let □ = 2×2 denote the free-standing square, which may be obtained
by adding an initial object to the free-standing cospan. Proposition 6 entails
that, for any locally presentable E, the composite E□lim ↩→ E□ ↩→ E2+2 lives in
IRLPCAT (see Fig. 1(right)).

2.3 Orthogonality

Our next well-known result is about orthogonality.

Definition 3. For any class J of morphisms in a category E,
a morphism 𝑝 : 𝐸 → 𝐵 in right orthogonal to J iff for any
𝑗 : 𝑋 → 𝑌 in J , any commuting square 𝑗 → 𝑝 as below admits
a unique lifting 𝑌 → 𝐸 making both triangles commute. We let
J⊥ denote the full subcategory of E2 spanned by morphisms that
are right orthogonal to J .

𝑋

𝑌

𝐸

𝐵

𝑗

𝑓

∃!
𝑝

𝑔

Proposition 7. For any set 𝐽 of morphisms in a locally presentable category E,
the embedding 𝐽⊥ ↩→ E2 lives in RLPCAT.

Since DFib is precisely {𝜕𝑡 }⊥, where 𝜕𝑡 : 1 → 2 picks the codomain of the
free-standing arrow, this readily entails:

Proposition 8. The embedding DFib ↩→ Cat2 lives in RLPCAT.

Remark 2. For any set 𝐽 of morphisms in a locally presentable category, 𝐽⊥ is
the right class of morphisms of an orthogonal factorisation system. E.g., taking
𝐽 = {𝜕𝑡 : 1→ 2} in Cat yields the comprehensive factorisation system [31].

Let us finally use the results of this section to construct categories of the
form DFibC

𝑣 , such as DFib2
𝑣 from §1.4.
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Definition 4. For any small category C and set 𝐽 of morphisms in some locally
presentable category E, letting R = 𝐽⊥, we define RC

𝑣 as the pullback below left,

RC
𝑣 RC

ECE

codC

E!

cod

RD
𝑣

RC
𝑣

RD

EDE

RC

ECE

codD

E! codC

E!

E𝐹

R𝐹

R𝐹𝑣

where E! denotes restriction along the unique functor to 1. Then, for any functor
𝐹 : C→ D in Cat, we define R𝐹𝑣 by universal property of pullback as above right.

Remark 3. Concretely, an object of RC
𝑣 is a diagram 𝐷 : C → R2 mapping all

objects to morphisms with a common codomain 𝐸 ∈ E.

Proposition 9. Both diagrams of Definition 4 live in RLPCAT (in particular,
pullbacks are pullbacks in RLPCAT).

Example 4. Since DFib = {𝜕𝑡 }⊥, any DFibC
𝑣 is locally presentable, and both

projections Cat
cod←−−− DFibC

𝑣 ↩→ DFibC → (Cat2)C live in RLPCAT. Taking
C = 2 and postcomposing the right-hand projection with dom2 : (Cat2)2 → Cat2

(using Proposition 5 to show that this lives in RLPCAT), we get the bottom
morphism of Fig. 1(left).

Combining this with Example 1 and Proposition 3, we obtain:

Proposition 10. The pullback in Fig. 1(left) lives in RLPCAT, with both ver-
tical morphisms in IRLPCAT.
Example 5. It is easy to see that the square on
the right is a pullback. The bottom functor of
Fig. 1(right) may thus be viewed as the pairing
⟨𝔓, id⟩ : NatMod → DFib2

𝑣 × DFib2
𝑣 , where 𝔓 is

the pointwise version of 𝔓, in the sense that it
maps any (C, ty , tm , proj , . . .) to 𝔓(proj ). Since
the identity functor lives in RLPCAT, this leaves
us with the task of proving that 𝔓 does so too.

DFib2+2
𝑣

DFib2
𝑣

DFib2
𝑣

Cat
cod

cod

DFib𝑖𝑛2𝑣

DFib𝑖𝑛1𝑣

Let us conclude this subsection by combining Proposition 9 with limit dia-
grams in the sense of Proposition 6.

Definition 5. For any small category C and set 𝐽 of morphisms in some locally
presentable category E, letting R = 𝐽⊥, we define R (C⊥ )lim𝑣 and its embedding into
RC⊥
𝑣 as the pullback below.

R (C⊥ )lim𝑣

RC⊥
𝑣

E(C⊥ )lim

RC⊥ EC⊥
domC⊥
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Proposition 11. The whole square of Definition 5 lives in RLPCAT, with all
marked monos in IRLPCAT.

Example 6. The composite DFib□lim
𝑣 ↩→ DFib□𝑣 → DFib2+2

𝑣 , which is the right-
hand functor in Fig. 1(right), lives in IRLPCAT.

2.4 Cartesian and opcartesian liftings

It remains to show that the bottom functor of Fig. 1(right) lives in RLPCAT.
We already broke it down as ⟨𝔓, id⟩ in Example 5. As sketched in the intro-
duction, we now reconstruct 𝔓 in a 2-categorical way, relying on the notion of
(op)fibration.

Definition 6 (Street [30]). A 1-cell 𝑝 : 𝐸 → 𝐵 in a 2-category K is a fibration
(resp. opfibration) iff each postcomposition functor [𝑋, 𝑝] : [𝑋, 𝐸] → [𝑋, 𝐵] is a
Grothendieck fibration (resp. opfibration), and furthermore, for any 𝑓 : 𝑋 → 𝑌 ,
the precomposition functor [ 𝑓 , 𝐸] : [𝑌, 𝐸] → [𝑋, 𝐸] preserves cartesian (resp.
opcartesian) 2-cells.

We first formalise the fact that all is well for fibrations:

Proposition 12. The forgetful functor RLPCAT ↩→ CAT reflects fibrations, in
the sense that any morphism in RLPCAT which is also a fibration in CAT, is
in fact a fibration in RLPCAT.

Remark 4. The real bit of information behind this result is that if we’re given
a fibration in CAT that happens to live in RLPCAT, then cartesian liftings of
natural transformations in RLPCAT along functors in RLPCAT will again live
in RLPCAT.

As announced in the introduction, the situation for opfibrations is more subtle:

Proposition 13. There exists a functor in RLPCAT which is a fibration in
CAT but not in RLPCAT.

However, in applications, some useful opcartesian liftings are reflected by the
forgetful functor. In order to exploit them, we introduce relative opfibrations.

Definition 7. In any 2-category K, a 1-cell 𝑝 : 𝐸 → 𝐵

is an opfibration relative to some 2-cell 𝛼 as on the right
iff any 2-cell factoring through 𝛼 admits an opcartesian
lifting 𝛼 as above right, i.e., for all 𝑞 and 𝑥 making the
front face commute, 𝛼◦0 𝑞 admits an opcartesian lifting as
shown, and furthermore opcartesianness of 𝛼 is preserved
under precomposition by arbitrary 1-cells.

𝑃

𝐵

𝐸

𝑋

𝑢

𝑣 𝑝

𝑥𝑞

𝛼

𝛼

Remark 5. An opfibration 𝑝 : 𝐸 → 𝐵 is an opfibration relative to the canonical
2-cell between cod , dom : 𝐵2 → 𝐵.
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E𝐽⊥

dom 𝐽

cod 𝐽

𝜆𝐽

Our main way of producing relative opfibrations is
through right orthogonality classes. We saw in Proposi-
tion 7 that embeddings of the form 𝐽⊥ ↩→ E2 live in
RLPCAT. This readily entails that the natural transfor-
mation on the right does so too. In fact, we have more:

Proposition 14. For any set 𝐽 of morphisms in a locally pre-
sentable category E, the codomain projection cod : 𝐽⊥ → E is an
opfibration relative to 𝜆𝐽 and the opcartesian lifting of any 𝑏

𝑠−→ 𝑐

along any 𝑎
𝑟−→ 𝑏 is given by composition.

𝑎

𝑏 𝑐

𝑎

𝑟

𝑠

𝑠 ◦ 𝑟

Example 7. By Proposition 14 cod is an opfibration relative to 𝜆, as below left
in RLPCAT.

DFib

CatDFib

coddom

cod

𝜆

DFib2
𝑣

CatDFib

coddom

cod

𝜆

(2)

Using Proposition 3, we deduce that cod : DFib2
𝑣 → Cat is also an opfibration

relative to 𝜆. This legitimates the opcartesian lifting of ext∗ (U) along 𝜋ty, which
is the 𝔓 of Example 5, needed for Fig. 1(right).

With this in stock, we have:

Proposition 15. All categories constructed in §1.4 are locally presentable.

2.5 Bonuses

In this final subsection, we record a few facts that are not useful for the basic
applications of §1.4, but that are for the harder applications in the next sections.

Proposition 16.

1. For any family (𝐹𝑖 : A𝑖 → B𝑖)𝑖∈𝐼 of functors in IRLPCAT, the product∏
𝑖 𝐹𝑖 :

∏
𝑖 A𝑖 →

∏
𝑖 B𝑖 in CAT2 is again in IRLPCAT.

2. The embedding RLPCAT ↩→ CAT creates transfinite cocompositions of
isofibrations, in the sense that for any ordinal 𝜆 and continuous functor
𝐹 : 𝜆op → IRLPCAT, any limiting cone in CAT in fact lives in IRLPCAT
and is limiting in RLPCAT.

Example 8. For any 𝜔-cochain . . . → C𝑛 → . . . → C1 → C0 of morphisms
in IRLPCAT, any limiting cone in CAT lives in IRLPCAT and is limiting in
RLPCAT.
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3 Application: multimodal type theory

In this section, we exploit our constructions to cover multimodal type theory [18].
We start with the ambient framework, and then consider logical connectives.

3.1 Ambient framework: multimodal natural models

The semantic framework for models of multimodal type theory is built up in
two stages: multimodal context structures are introduced first; then multimodal
natural models are defined on top of that.

We consider a fixed, small 2-category M, throughout the section.
Let us introduce the first-stage structure:

Definition 8. A multimodal context structure is a 2-functor Mcoop → Cat,
where Mcoop denotes M with both 1- and 2-cells reversed, and Cat here denotes
the 2-category of small categories (with 2-dimensional structure).

Multimodal context structures and 2-natural transformations between them
form a category, which we denote by CatMcoop

.

Remark 6. Although it is constructed from 2-categories, we are considering the
mere 1-category of 2-functors and 2-natural transformations.

Proposition 17. The category CatMcoop

is locally presentable.

We now move on to the second-stage structure, for which we use the following
alternative, yet equivalent definition.

Definition 9. A multimodal natural model [18, Definition 5.4] consists of a
multimodal context structure ⟦−⟧ : Mcoop → Cat, equipped with a morphism
proj𝑚 : tm𝑚 → ty𝑚 of discrete fibrations over ⟦𝑚⟧, such that, for all 𝜇 : 𝑚 → 𝑛 in
M, each pullback ⟦𝜇⟧∗ (proj𝑚) : ⟦𝜇⟧∗ (tm𝑚) → ⟦𝜇⟧∗ (ty𝑚) is equipped with natural
model structure over ⟦𝑛⟧.

We call MNatMod the category of multimodal natural models and structure-
preserving morphisms between them.

Our constructions allow us to prove:

Proposition 18. The category MNatMod is locally presentable.

Proof (sketch). Starting from CatMcoop (using Proposition 17), we take the pull-
back below left, thus equipping each base category with a morphism of discrete
fibrations.

CatMcoop

DFib2
𝑣

Catob(M)CatMcoop

(DFib2
𝑣)ob(M)

⟨ev𝑚⟩𝑚

codob(M)

⟨U𝑚⟩𝑚 MNatMod

(DFib2
𝑣)mor(M)CatMcoop

DFib2
𝑣

NatModmor(M)

⟨ev ∗𝜇 (Udom (𝜇) )⟩𝜇
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We then take the pullback above right, where mor(M) denotes the set of mor-

phisms in M and ev 𝜇 denotes the natural transformation CatMcoop

DFib2
𝑣

Cat

ev𝑚

ev𝑛

ev 𝜇

induced by each 𝜇 : 𝑚 → 𝑛 in M. By Propositions 2 and 12, the tupling

⟨ev ∗𝜇 (Udom (𝜇) )⟩𝜇 : CatMcoop

DFib2
𝑣
→ (DFib2

𝑣)mor(M)

lives again in RLPCAT, hence so does the pullback.

3.2 Connectives

In this subsection, we sketch a treatment of logical connectives of multimodal
type theory. As before, we focus on dependent product.

Definition 10. A dependent product structure [18, §5.2.1] on a multimodal
natural model (⟦−⟧, ty , tm , proj , var , . . .) consists of morphisms 𝔓𝜇 (proj𝑚) →
proj𝑚, for all morphisms 𝜇 : 𝑚 → 𝑛 in M, whose underlying square is a pullback,
where 𝔓𝜇 denotes the composite

DFib2
⟦𝑚⟧

⟦𝜇⟧∗
−−−−→ DFib2

⟦𝑛⟧
ext∗𝑛−−−→ DFib2

ty𝑛

𝜋
ty𝑛
!−−−→ DFib2

⟦𝑛⟧.

Proposition 19. The category of multimodal natural models with dependent
products and morphisms between them is locally presentable.

Proof. We proceed by combining the techniques for plain dependent product
(notably Proposition 14) with those for MNatMod in the previous subsection
(i.e., indexing everything by morphisms in M).

4 Application: SOGATs

In this section, we present a second application of §2: we interpret SOGATs as
locally presentable categories. By definition, SOGATs pertain to a specific logical
framework [33,34]. This logical framework is itself close to standard type theory
with dependent products, but departs from it in two main ways:

1. it is indexed by so-called signatures, with a “local” type theory at each sig-
nature, and

2. it has two universes ∗ and □ of types, and only dependent products of the
form

∏
𝐴 𝐵 for 𝐴 : ∗ and 𝐵 : □ are allowed, with a result in □.

Furthermore, signatures interact with local type theories through some specific
signature extension rules. SOGATs are defined as signatures in this logical frame-
work, so their semantics will follow if we interpret the latter.
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Remark 7. Signatures are in fact potentially infinite, which we can accomodate
by Proposition 16(2).

The rest of this section is devoted to sketching such an interpretation. We first
sketch the over architecture of our interpretation and its central piece (§4.1), a
generalised category with families [11,10], and then the interpretation of the log-
ical framework’s dependent products (§4.2) and signature extension rules (§4.2).
More details are available in the appendix.

4.1 Overall architecture

Were we to interpret a plain type theory with dependent products, it would
suffice to exhibit something like a CwF with the structure described in Fig. 2.
But since we wish our interpretation to live in RLPCAT, we work with categories
that are definitely not small. Furthermore, we consider fibrations that are not
discrete. We thus need to move from DFib to general fibrations in RLPCAT.
Furthermore, we work in the slice 2-category K = RLPCAT/Cat over Cat. All
in all, we work in the category FIB(K) of general fibrations in K. We thus need
to generalise from CwFs to the following:

Definition 11 ([11,10]). A generalised category with families2 (gecawf) object
in a 2-category K consists of an object 𝐶, together with fibrations 𝜋ty : ty → 𝐶

and 𝜋tm : tm → 𝐶 and a fibration morphism proj : ty → tm with a right adjoint
var ⊢ proj in K, such that the unit and counit are cartesian.

Remark 8. For coherence reasons, we actually need to work with split fibrations.
We gloss over this here for simplicity, and refer the reader to the appendix.

Example 9. The prime example of a gecawf in CAT is given below left, where
tm = DFib• denotes the category of discrete fibrations equipped with a section.

DFib• DFib

Cat
cod

DFibR
𝑣 DFib2

𝑣

DFib

DFib𝜕R
𝑣

cod 𝑣

[Σ,DFibR
𝑣 ] [Σ,DFib2

𝑣]

[Σ,DFib]

[Σ,DFib𝜕R
𝑣 ]

[Σ, cod 𝑣]

It remains to figure out the structure needed to interpret indexing over signa-
tures and dependent products as in (1) and (2) above, as well as the interaction
between signatures and local theories.

Indexing is taken care of by “homming into”: we exhibit a gecawf with suitable
dependent products in K = RLPCAT/Cat, as above center, and let the local
theory at any signature Σ denote the one above right. (This in particular implies
that each signature Σ is interpreted as a functor 𝜋Σ : |Σ | → Cat in RLPCAT.)

We now need to prove that the above center triangle is a gecawf:

2 This is a generalisation of the existing notion of gecawf in an arbitrary 2-category.
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Proposition 20. The functor DFib𝜕R
𝑣 : DFibR

𝑣 → DFib2
𝑣 admits a right adjoint

𝜌 over Cat, given by pointwise self pullback, in the sense that the image of
any (C, ty , tm , proj ) is the pullback of proj with itself, with section the diagonal.
Moreover, the unit and counit are vertical over Cat and cartesian with respect
to the projections to DFib.

Finally, we upgrade this gecawf to some version with two universes, and
exhibit the desired dependent products. The second universe, and the embedding
of ∗ as a subuniverse of □, are modelled as the embedding NatMod ↩→ DFib2

𝑣 .

4.2 Dependent products

Accordingly, the polynomial functor 𝔓 used in Fig. 2 to axiomatise dependent
products becomes

FIB(K)2DFib

𝜉 ∗

−−→ FIB(K)2NatMod

𝜋
ty
!−−→ FIB(K)2DFib,

where 𝜉 and 𝜋ty denote the functors below, respectively mapping (C, ty , tm , proj )
to tm and ty .

DFib
cod𝑣←−−−− DFib2

𝑣

DFib
𝜕R
𝑣←−−−−−− DFibR

𝑣

𝜌
←− DFib2

𝑣 ←↪ NatMod ↩→ DFib2
𝑣

cod𝑣−−−−→ DFib,

where 𝜌 is the right adjoint of Proposition 20.

Remark 9. The most important point here is perhaps that we use NatMod rather
than DFib2

𝑣 as the middle object, which accounts for the specific form of depen-
dent products in the logical framework (2).

Now, to show that the given gecawf features such dependent products, we need
to exhibit an analogue of a pullback square 𝔓(proj ) → proj . Let us start with
the DFib2

𝑣 component. The pullback below left

DFib

𝔓(DFib2
𝑣) DFib2

𝑣

NatMod

cod 𝑣

𝜉

dfib

natmod
tm ty

C

E
proj

𝜋ty
𝜋tm

𝑝

𝑞

var

⊢

along 𝜉 has as objects all diagrams of the form above right: natural models
equipped with a discrete fibration morphism to their terms.

We should now define functors 𝜆 and Π as below left,

𝔓(DFibR
𝑣 ) DFibR

𝑣

𝔓(DFib2
𝑣) DFib2

𝑣

𝜆

Π

DFib𝜕R
𝑣𝔓(DFib𝜕R

𝑣 )

E′

tm ty

C

E

var

𝜋ty
𝜋tm

𝑞

var ∗ (𝑞)

𝑝
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which should be morphisms of fibrations over DFib and form a pullback. For
Π, we map any object (C, ty , tm , . . . ,E, 𝑝, 𝑗) to some choice of pullback var ∗ (𝑞),
viewed as a discrete fibration morphism to 𝜋ty , as above right. The functor 𝜆
component is similar, the only difference being that 𝑞 has a section. Retractions
being closed under pullback, var ∗ (𝑞) does lift to a functor 𝔓(DFibR

𝑣 ) → DFibR
𝑣 .

Remark 10. It may not be obvious at this point that Π and 𝜆 are relevant for
interpreting SOGATs. We explain this in a bit more detail in Example 10 below,
but in the meantime, we invite the reader to think of objects of E as inputs to
some operation being specified, which are indexed by terms. This encompasses
inputs that are indexed by types: one may pull back along proj to index over
terms. Then, pulling back along var as Π does amounts to considering inputs “in
an extended context”, which is precisely what is needed for binding operations.

The proof that the obtained square is a pullback is rather technical, and omitted
for lack of space.

4.3 Signature extension

We conclude by sketching our interpretation of the interaction between signa-
tures and local type theories. This happens mainly through “signature extension”
rules. The logical framework features three rules for extending signatures and
one for extending contexts, which we include for comparison:

Σ |Γ ⊢
Σ, Γ⇒ ∗ ⊢

Σ |Γ ⊢
Σ, Γ⇒ □ ⊢

Σ |Γ ⊢ 𝐴 : □

Σ, Γ⇒ 𝐴 ⊢
Σ |Γ ⊢ 𝐴 : □

Σ |Γ, 𝐴 ⊢

In our interpretation, Σ |Γ is a context in the local type theory over Σ, which
means a morphism |Σ | → DFib over Cat in RLPCAT. The first three rules
construct an signature, while the last one construct a context in the current
local type theory. We interpret these rules as below.

Σ, Γ⇒∗

Σ DFib

NatMod

Γ

ty

Σ, Γ⇒□

Σ DFib

DFib2
𝑣

Γ

cod 𝑣

Σ, Γ⇒𝐴

Σ DFib2
𝑣

DFibR
𝑣

𝐴

DFib𝜕R
𝑣

Σ DFib2
𝑣

DFib

𝐴

dom𝑣
Γ, 𝐴

Remark 11. An object of |Σ, Γ ⇒ □| is an object 𝐶 ∈ |Σ | together with a mor-
phism to |Γ| (𝐶) in DFib𝜋Σ (𝐶 ) – same for |Σ, Γ ⇒ ∗|, except that the morphism
now should be equipped with a right adjoint. By contrast, an object of |Σ, Γ⇒ 𝐴|
is an object 𝐶 ∈ |Σ | equipped with a section of proj 𝐴(𝐶) : |𝐴| (𝐶) → |Γ | (𝐶) over
𝜋Σ (𝐶). (This in particular yields a term of type 𝐴 (weakened) in Σ, Γ⇒ □| ().)

Example 10. For some uninteresting reasons, the signature Σ := (ty : □, el :
ty ⇒ ∗) is in fact interpreted as NatMod. Let us sketch the (hopefully more
interesting) interpretation of ΣΠ := (Σ,Π : (𝐴 : ty, 𝐵 :

∏
𝐵:el(𝐴) ty) ⇒ ty).

Briefly, the type Σ | () ⊢ ty : □ is interpreted as the functor NatMod → DFib2
𝑣
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mapping any (C, ty , tm , proj , var ) to the unique morphism 𝜋ty : ty → C of dis-
crete fibrations over C. Furthermore, the context Σ |𝐴 : ty, 𝐵 : el(𝐴) is inter-
preted as the functor NatMod → DFib returning 𝜋tm . Thus, by local weaken-
ing, Σ |𝐴 : ty, 𝐵 : el(𝐴) ⊢ ty : □ is interpreted as the right-hand pullback square
below.

tm ×C ty⟦∏el ty⟧ ty

Ctmty

𝜋ty

𝜋tmvar

By definition of the functor Π defined in §4.3, the dependent product Σ |𝐴 :
ty ⊢ ∏

𝐵:el(𝐴) ty : □ is obtained by further pulling back along var , as in the
left-hand square above. Since the bottom composite is in fact ext ,

∏
el(𝐴) ty

as returning ext∗ (𝜋ty ). Extending the context with this, we get the functor

NatMod→ DFib returning the composite ext∗ (ty)
ext∗ (𝜋ty )
−−−−−−−−→ ty

𝜋ty

−−→ C. We have
recovered the type component 𝔓(𝜋ty ) = 𝜋

ty
!
(ext∗ (𝜋ty )) of Fig. 2(right). Finally,

the weakened type ty : □ takes the product with ty over C, so that the exam-
ple signature ΣΠ is interpreted as the category of natural models equipped with
sections of ty𝛾 ×

∐
𝑎∈ty𝛾 tyext (𝛾,𝑎) →

∐
𝑎∈ty𝛾 tyext (𝛾,𝑎) , i.e., equivalently, maps∐

𝑎∈ty𝛾 tyext (𝛾,𝑎) → ty𝛾, as desired.

5 Conclusion

We have demonstrated that a few well-known constructions on locally pre-
sentable categories may be used to efficiently produce a large class of categories
of models of dependent type theories.

The natural next step is to try and design a synthetic theory of locally pre-
sentable categories, which would yield a potentially mechanisable formal frame-
work in which to express such constructions. Inspiration for this may be drawn
from work by Cisinski et al. [9] and Riehl and Verity [29].
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The fact that it is not only a bipullback but also a pullback in RLPCAT follows
from the 2-functor RLPCAT→ CAT being faithful and locally faithful.

Proof (Propositions 4 and 5). The 1-dimensional part of these statements mostly
follows from the cotensor part of Proposition 2 below (this is in fact [4, Propo-
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Let us now deal with the 2-dimensional part. By Kelly [24, §3.4], the hom-2-
category [K,Cat] is locally finitely presentable in the Cat-enriched sense, so by
Kelly [24, §7.5] its underlying category is locally finitely presentable in the plain
sense. Moreover, any restriction 2-functor is a right 2-adjoint by 2-cocompleteness
of Cat, hence the underlying functor is a right adjoint. When 𝐹 : K → L is an
injective-on-objects 2-functor, the restriction functor 𝐹∗ : [L,Cat] → [K,Cat] is
an isofibration thanks to Theorem 9 in §D.

It remains to justify the natural isomorphism

RLPCAT(C,CatK) � | [K, [C,Cat]r] |.

It is enough to show that the isomorphism of categories below restricts to the
above one.

CAT(C,CatK) � | [K, [C,Cat]] |
In other words, we must show that a functor 𝐹 : C→ CatK is accessible and con-
tinuous if and only if the corresponding 2-functor K→ [C,Cat] factors through
[C,Cat]r, which means that for each object 𝑘 of K, the functor 𝐹 (𝑘,−) : C→ Cat
is right adjoint, or equivalently by Proposition 1, that it is accessible and contin-
uous. This follows from the fact that limits and colimits are computed pointwise
in a 2-functor 2-category.

Proof (Example 2). We need to show that the bottom functor is a right adjoint:

it is indeed right adjoint to the functor Cat2 dom−−−−→ Cat.

Proof (Proposition 6). Let us readily observe that this functor is an isofibration
because limit cones are closed under isomorphism in [C⊥,E]. Furthermore, by
completeness of E this functor is the full image of the right Kan extension functor∏

C : EC → [C⊥,E]. By full faithfulness of the embedding C ↩→ C⊥,
∏

C is fully
faithful, hence EC ↩→ [C⊥,E]lim is an equivalence. This shows that [C⊥,E]lim
is locally presentable, by Proposition 2. Finally, by construction,

∏
C lives in

RLPCAT, as a right adjoint functor between locally presentable categories. ⊓⊔

Before proving Proposition 7, we show:

Lemma 2. For any locally presentable category E and set 𝐽 of morphisms therein,
the full subcategory 𝐽y spanned by objects that are right orthogonal to 𝐽 is again
locally presentable, where 𝑋 ∈ 𝐽y iff for any 𝑗 : 𝐴 → 𝐵 in 𝐽, any morphism
𝐴→ 𝑋 uniquely extends to 𝐵, as below.

𝐴

𝐵

𝑋

𝑗

𝑓

∃!

Furthermore, the embedding 𝐽y ↩→ E lives in RLPCAT.

Proof. This is well known, but here is a concise proof. The functor 𝐽y ↩→ E
arises by pullback in CAT as below left,
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𝐽y

E (Set2)𝐽

(SetI)𝐽

( [ 𝑗 ,−]) 𝑗∈𝐽

(Set𝜕I )𝐽 E Set

[𝑏,−]

[𝑎,−]

[ 𝑗 ,−]

where for any ( 𝑗 : 𝑎 → 𝑏) ∈ 𝐽, the 𝑗th component of the bottom functor maps
any 𝐸 ∈ E to the map [ 𝑗 , 𝐸] : [𝑏, 𝐸] → [𝑎, 𝐸]. The square is a pullback in CAT
by definition of 𝐽y, and the right-hand functor is in IRLPCAT by Proposition 2
and ?? AL: broken ref. Finally, the bottom functor is in RLPCAT by ?? and the
fact that each [ 𝑗 , 𝐸] corresponds by universal property of Set2 to the natural
transformation above right, which is in RLPCAT by Proposition 1.

Proof (Proposition 7). We apply the lemma with the category E2 and set of
arrows, say 𝐽+, given by all morphisms ( 𝑗 , id ) : 𝑗 → id , as below,

𝐴

𝐵

𝐵

𝐵

𝑗

𝑗

for 𝑗 ∈ 𝐽. Indeed, the subcategory (𝐽+)y consists of all morphisms 𝑓 : 𝑋 → 𝑌

such that, for all 𝑢 and 𝑣 making the back face below commute,

𝐴

𝐵

𝐵

𝐵

𝑋

𝑌

𝑗

𝑗

𝑓

𝑢

𝑣

𝑘

𝑣′

there exist unique 𝑘 and 𝑣′ making the whole diagram commute. But 𝑣′ must
equal 𝑣, so this is clearly equivalent to 𝑓 ∈ 𝐽⊥, hence the result.

Proof (Proposition 9). Easy by the previous results.

Proof (Proposition 11). Easy by the previous results.

Proof (Proposition 12, due to Anon. (personal communication)). Let us first
treat the case of fibrations. By Weber [35, Theorem 2.7], a morphism 𝑓 : 𝐴→ 𝐵

in any finitely complete 2-category K is a fibration iff the canonical morphism
𝑐 : 𝐴→ 𝐵/ 𝑓 has a right adjoint in K/𝐵. The canonical morphism is constructed
by universal property of 𝐵/ 𝑓 as below.
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𝐴

𝐵

𝐵/ 𝑓

𝐴

𝑓

𝜋2

𝜋1

𝑓

𝑐

𝜆

Having a right adjoint in K/𝐵 boils down to having a right adjoint 𝑟 in K such
that 𝑓 𝑟 = 𝜋1, and the unit and counit project to identities, i.e., 𝑓 ◦0 𝜂 = id𝐵 and
𝜋1 ◦0 𝜀 = id𝐵.

So let us consider any 𝑓 : 𝐴 → 𝐵 in RLPCAT which is a fibration in CAT.
By Proposition 2, the comma category 𝐵/ 𝑓 in CAT is also a comma object in
RLPCAT, so the canonical morphism 𝑐 is again in RLPCAT. It remains to prove
that the right adjoint 𝑟 is a right adjoint in RLPCAT/𝐵, which is all trivial.

Proof (Proposition 13). The codomain functor cod : DFib → Cat is an opfi-
bration, with opcartesian lifting given by the comprehensive factorisation sys-
tem [31]. However, cod is not an opfibration in RLPCAT. Indeed, let us consider
the 2-cell below left.

DFib

Cat

DFib

1

cod!

1

!
∅ 1 I

𝑠

𝑡

Its opcartesian lifting in CAT maps any discrete fibration 𝑝 : 𝐸 → 𝐵 to the
unique functor 𝜋0 (𝐸) → 1, where 𝜋0 (𝐸) denotes the set of connected components
of 𝐸 , viewed as a discrete category. Continuity of this functor is equivalent to
continuity of 𝜋0 : Cat → Set, which does not hold. Indeed, e.g., it does not
preserve the equaliser above right.

We then work towards proving Proposition 14. We start with a characterisa-
tion of relative opfibrations.
Proposition 21. Let us consider any 𝑝 : 𝐸 → 𝐵 and 𝛼 : 𝑢 → 𝑣 : 𝑃 → 𝐵 in any
2-category K, such that the pullback 𝑃 ×𝐵 𝐸 exists. Then, 𝑝 is an opfibration
relative to 𝛼 iff

– 𝛼 ◦0 𝜋1 has an opcartesian lifting 𝛼 along 𝜋2, as below, and furthermore
– opcartesianness of 𝛼 is preserved under precomposition by arbitrary 1-cells.

𝑃

𝐵

𝐸

𝑃 ×𝐵 𝐸

𝑢

𝑣

𝑝

𝜋2

𝜋1

𝛼
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Proof. The “only if” direction is clear. For the “if” part, for any 𝑞 and 𝑥 as below,

𝑃

𝐵

𝐸

𝑃 ×𝐵 𝐸𝑋

𝑢

𝑣
𝑝

𝜋2

𝛼! (𝜋2)

𝜋1

𝛼

𝛼

𝑥

𝑞

𝑚

we find 𝑚 : 𝑋 → 𝑃×𝐵𝑃 by universal property of pullback, and 𝛼◦0𝑚 is opcartesian
by construction. ⊓⊔

Let us now give a few results for constructing relative opfibrations in RLPCAT.
We start with a sufficient condition (Corollary 1), which relies on the following
lemma.

Lemma 3. For any opfibration 𝑝 in CAT, 𝑝-opcartesian 2-cells are pointwise,
in the sense that a natural transformation is opcartesian iff all of its components
are.

Proof. Let us consider an opfibration 𝑝 in CAT. Opfibrations in CAT are Groth-
endieck opfibrations. Thus, given an opcartesian 2-cell 𝛼 : 𝑢 → 𝑣 : 𝑋 → 𝐸 , for
any 𝑥 ∈ 𝑋, the whiskering 𝛼 ◦0 𝑥 is again opcartesian for 𝑝1 : 𝐸1 → 𝐵1, hence op-
cartesian for 𝑝. Conversely, if 𝛼 is pointwise opcartesian, then it is easy to show
that possesses the 2-categorical opcartesianness property: for any lifting prob-
lem, we infer the components of a candidate mediating transformation, which is
natural by uniqueness. ⊓⊔

Corollary 1. Given 𝑝 : 𝐸 → 𝐵 and 𝛼 in RLPCAT as below

𝑃

𝐵

𝐸

𝑃 ×𝐵 𝐸

𝑢

𝑣

𝑝

𝜋2

𝛼! (𝜋2)

𝜋1

𝛼

such that the pullback 𝑃×𝐵𝐸 in CAT is created by the forgetful functor RLPCAT→
CAT. Then, 𝑝 is an opfibration relative to 𝛼 in RLPCAT if

– it is an opfibration in CAT, and furthermore
– the opcartesian lifting 𝛼! (𝜋2) above is continuous.

Proof. The opcartesian lifting being continuous entails that it is opcartesian in
RLPCAT, hence we conclude by Proposition 21, using Lemma 3. ⊓⊔
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We may now prove Proposition 14.

Proof (Proposition 14). We apply Corollary 1. That the codomain functor R cod−−−→
C is an opfibration in CAT is well-known and easy. That the composition functor
is continuous follows readily from the well-known fact that the forgetful functor
R → C2 creates limits, or otherwise said that the right-hand class of any strong
factorisation on a complete category is closed under pointwise limits. ⊓⊔

Proof (Proposition 15). Things follow easily up to NatMod. Let us now deal
with dependent products. We first add up the morphisms 𝜆 and Π, and then
incorporate the pullback condition. For adding the desired morphisms, we first
consider the reindexing the forgetful functor U, along the needed composite, as
below left,

NatMod

Cat

DFib2
𝑣

NatMod

ctx

U

ext∗ (U)

ty

ext NatMod

Cat

DFib2
𝑣

NatMod

ctx

𝜋
ty
!
ext∗ (U)

ext∗ (U)

ty

𝜋ty

where, at any natural model (C, ty , tm , proj , var ) with proj ⊣ var ,

– ctx returns C,
– ty returns ty ,

– ext returns the composite ty
var−−−→ tm

𝜋tm

−−−→ C.

We check that the involved functors are right adjoints: ctx is the composite

NatMod
U−→ DFib2

𝑣 → Cat,

while ty is the composite

NatMod→ DFib2
𝑣

cod𝑣−−−−→ DFib
dom−−−−→ Cat.

We then opreindex the result along the projection 𝜋ty : ty → ctx, as above
right, by virtue of (2)(left). Indeed, the front face above right forms a cone over

DFib
dom−−−−→ Cat

cod←−−− DFib2
𝑣 . This gives us a functor 𝐴 := 𝜋ty

!
ext∗ (U) : NatMod→

DFib2
𝑣 in RLPCAT. Pairing this with U over Cat, we obtain a functor

⟨𝐴,U⟩ : NatMod→ DFib2+2
𝑣 ,

which we take as our arity. Finally, we pull this back along the restriction functor
DFib2×𝜕

𝑣 : DFib□𝑣 = DFib2+2
𝑣 → DFib2+2

𝑣 , so that an object of the pullback
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NatMod0
Π

NatMod DFib2+2
𝑣

DFib□𝑣

⟨𝐴,U⟩

DFib2×𝜕
𝑣

is precisely a natural model equipped with morphisms 𝜆 and Π making the
desired square commute.

It remains to incorporate the condition that the given squares are pullbacks.
For this, our arity is the functor NatMod0

Π
→ DFib□𝑣 just constructed, which we

pullback along the full subcategory embedding DFib□lim
𝑣 ↩→ DFib□𝑣 of Example 6.

⊓⊔

Proof (Proposition 16). The first point is easy. For the pullback case, creation
of flexible limits entails creation of all bilimits. Indeed, creation of pseudo-limits
entails creation of all bilimits by Proposition 6.1 of [25], and furthermore cre-
ation of flexible limits entails creation of pseudo-limits by Theorem 1.25 of [4].
Furthermore, by Joyal and Street [21, Corollary 1], any pullback along an isofi-
bration in a 2-category is in fact a bipullback, hence any such pullback is created
by the forgetful functor.

Finally, the result about transfinite cocomposition essentially follows from [6,
Proposition A.3(1)].

A.2 Proofs for §3

Proof (Proposition 19).
We first add up the morphisms 𝜆𝜇 and Π𝜇, and then incorporate the pullback

condition.

Notation 4. We consider the forgetful functor MNatMod → CatMcoop

DFib2
𝑣

as an
implicit coercion, so that U𝑚 : MNatMod→ DFib2

𝑣 actually denotes the compos-
ite

MNatMod→ CatMcoop

DFib2
𝑣

U𝑚−−→ DFib2
𝑣 .

As before, we proceed by reindexing U𝑚, but this time along the needed com-
posite, as below left,

MNatMod

Cat

DFib2
𝑣

MNatMod

ev𝑚

ev𝑛

U𝑚

(ev 𝜇ext𝑛)∗ (U𝑚)

ty𝑛

ev 𝜇

ext𝑛
DFib

Cat

DFib2
𝑣

MNatMod

cod

ty𝑛

(q𝑛)! (ev 𝜇ext𝑛)∗ (U𝑚)

(ev 𝜇ext𝑛)∗ (U𝑚)

dom



Title Suppressed Due to Excessive Length 27

and then opreindexing the result above right. This gives us a functor 𝐴𝜇 :=
(𝜋ty𝑛 )! (ev 𝜇ext𝑛)∗ (U𝑚) : MNatMod → DFib2

𝑣 in RLPCAT. Pairing this with U𝑛
over Cat, we obtain a functor

⟨𝐴𝜇,U𝑛⟩ : MNatMod→ DFib2+2
𝑣 ,

which we take as our arity. We then take the pullback

MNatMod
𝜇

Π

MNatMod DFib2+2
𝑣

DFib□lim
𝑣

⟨𝐴𝜇,U𝑛⟩

whose objects are precisely a multimodal natural models equipped with mor-
phisms 𝜆𝜇 and Π𝜇 making the desired square commute. As previously, we collect
all such squares by raising the arity type to the power of mor(M) and tupling all
arities.

⊓⊔

B Semantics of Uemura’s logical framework

In this section, we present a model of Uemura’s logical framework that allows to
interpret a SOGAT as its locally presentable category of models. The main ingre-
dient to interpret the logical framework is a generalised CwF in RLPCAT/Cat.
We present it in §B.2, and we later enrich it with a class of small types in §B.3,
dependent products with small domains in §B.4, and extensional identity types
in §B.5. In §B.6, we explain how to account for the empty context in type the-
ories specified by SOGATs. Let us start, in §B.1, with providing an alternative
indexed notion of natural models in order to avoid the coherence probleme when
interpreting the logical framework.

B.1 Indexed natural models

The definition of natural models that we used so far would not be able to account
for strict associativity of substitution. Essentially, this is the standard issue pre-
venting a direct interpretation of dependent type theories in locally cartesian
closed categories: the codomain fibration is not split. Therefore, in this section,
we work with an alternative description where we work with presheaves rather
than discrete fibrations.

Notation 5. Let P→ denote the total category Cat//Set of presheaves over
small categories; we denote by 𝑑𝑓 𝑖𝑏 the functor P→ → Cat2 mapping a presheaf
to its associated discrete fibration. This is in RLPCAT by the results of §C, in
particular Corollary 3. The induced functors dom and cod from P→ to Cat map-
ping a presheaf to its category of elements and its base category are respectively
denoted by dom and cod .
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Let Pd denote the category of presheaves such that the associated discrete
fibration has a right adjoint var , defined as below.

P→

Pd Catadj

Cat2
𝑑𝑓 𝑖𝑏

Let P↠ denotes the category of presheaves 𝐹 equipped with a section 1 → 𝐹,
formally defined as the pullback below

P↠ Cat//Set2

Cat Cat//Set

Cat//Setdom

Cat//1

where Cat//1 is the right adjoint to the projection Cat//Set → Cat, mapping a
category to the terminal presheaf over it. We get the projection to P↠ → P→ as

the composition P↠ → Cat//Set2 Cat//Setcod
−−−−−−−−→ Cat//Set = P→.

Given any formal sequence of potentially dashed our double-headed arrows
→ . . . →, we define P→...→ by suitable iterated pullbacks of P→, Pd, and P↠.
For example, Pd→ is the pullback of Pd

cod−−−→ Cat
dom←−−−− P→. It is the category

of (indexed) natural models: objects consists of a presheaf 𝑡𝑦 and a presheaf 𝑡𝑚
over

⨖
𝑡𝑦 such that

⨖
𝑡𝑚 →

⨖
𝑡𝑦 has a right adjoint var .

B.2 Structural rules

The main result that allows us to give semantics to the core structure of Uemura’s
logical framework is the following.

Proposition 22. The functors P↠→ → P→→
𝜋2−−→ P→, with their codomain pro-

jections to Cat, defines a split generalised category with families (Definition 11)
in the slice 2-category RLPCAT/Cat in the following sense:

– the projections P↠→ 𝜋2−−→ P→ and P→→
𝜋2−−→ P→ are split fibrations internal

to RLPCAT/Cat;
– the projection functor P↠→ → P→ preserves (chosen) cartesian 2-cells and

has a right adjoint 𝑅 over Cat;
– the unit and counit are cartesian (in the split cleavage) and vertical with

respect to the projections to Cat;
– P→ has a terminal object in RLPCAT/Cat, in the sense that cod : P→ → Cat

has a right adjoint over Cat.

Proof. First, all the involved functors are right adjoints:
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– the left adjoint to cod : P→ → Cat maps a category to the empty presheaf 0
over it;

– the left adjoint to 𝜋2 : P→→ → P→ maps a presheaf 𝐶op 𝑋−→ Set to (𝑋, 0);
– the left adjoint to the projection P↠→ → P→→ maps (𝑋,𝑌 ) to (𝑋,𝑌 + 1).

The projections P↠→ 𝜋2−−→ P→ and P→→
𝜋2−−→ P→ are split fibrations in CAT, so

they are in RLPCAT. Then, it is easy to check that a fibration in a 2-category
is also a fibration in any slice 2-category, so that we indeed have a fibration
in RLPCAT/Cat. The right adjoint to the projection functor P↠→ → P→→

maps a pair of presheaves (𝐶op 𝐴−→ Set,
⨖
𝐴op 𝐵−→ Set) to (𝐶op 𝐵′−−→ Set,

⨖
𝐵′op �⨖

𝐵op →
⨖
𝐴op 𝐵−→ Set), where 𝐵′ is the image the image of 𝐵 by the equivalence

[
⨖
𝐴op , Set] ≃ [𝐶op , Set]/𝐴, that is, 𝐵′ maps 𝑐 to

∑
𝑎∈𝐴(𝑐) 𝐵(𝑎). It is straightfor-

ward to check that the unit and counit are cartesian and vertical.
Finally, the terminal object in P→ is given by the terminal presheaf 1 over

the terminal category 1,
The right adjoint Cat//1: Cat → P→ of the last item maps any category to

the terminal presheaf over it.

In the following, by cartesian 2-cell with respect to a split fibration, we always
mean a 2-cell that is in the split cleaveage, which makes the following result
trivial.

Lemma 4. Given a split fibration 𝑝 : 𝐸 → 𝐵, two cartesian 2-cells sharing the
same 1-cell as codomain are equal if and only if their whiskering by 𝑝 are equal.

Definition 12. We denote the composition P→→
𝑅−→ P↠→ 𝜋2−−→ P→ by P◦: it

maps (𝐶op 𝐴−→ Set,
⨖
𝐴op 𝐵−→ Set) to the presheaf on 𝐶 mapping 𝑐 to

∑
𝑎∈𝐴(𝑐) 𝐵(𝑐, 𝑎).

Lemma 5. The following triangle commutes up to isomorphism.

P→→ P→

Cat

�

P◦

dom

dom

With this structure, we are already able to interpret all the structural rules
of Uemura’s logical framework, potentially involving large types: we list below
the interpretation of the judgements, and of the structural rules. Note that the
semantics takes place in RLPCAT/Cat: the 1-cells are required to commute
strictly with the projection to Cat, and any 2-cell must be vertical with respect
to these projections (that is, whiskering it with the projection must yield the
identity natural transformation).
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Semantics of judgements We list below the interpretation of judgements in
RLPCAT/Cat: 1-cells must commute with the projections to Cat, and 2-cells
must be vertical with respect to those projections.

Σ ⊢ sig
Σ Cat

Σ

Σ | Γ ⊢ ctx
Σ P→

Γ

Σ | Γ ⊢ 𝐴 : □

Σ P→

P→→

Γ

𝐴 𝜋2

Σ | Γ ⊢ 𝑎 : 𝐴

(given Σ | Γ ⊢ 𝐴 : □)
Σ P→→

P↠→

𝐴

𝑎

Σ ⊢ 𝜎 : Σ′ Σ Σ′

isofibration

𝜎

Σ | Γ ⊢ 𝛾 : Δ Σ P→

Γ

Δ

𝛾

Semantics of structural rules We list the interpretation of the main struc-
tural rules in RLPCAT/Cat. Some of them slightly differ from Uemura’s syn-
tactic presentation. Indeed, we are focusing on presenting a semantics for the
logical framework rather than an interpretation of the raw syntax and typing
rules. Of course, the former entails the latter via the initiality property of the
syntactic model [33,12,32].

For legibility, we adopt a named convention for variables in the rules, and
weakenings are implicit: for example, we write the first variable of a context ex-
tended by 𝐴 as 𝑥 : 𝐴 instead of 𝑥 : 𝐴[𝑝𝐴] where 𝑝𝐴 is the weakening substitution.

() ⊢ sig Cat
𝑖𝑑−−→ Cat

Σ ⊢ sig
Σ | () ⊢ ctx Σ Cat P→

Σ Cat//1

Σ | Γ ⊢ 𝐴 : □

Σ | Γ, 𝑥 : 𝐴 ⊢ 𝑝𝐴 : Γ Σ P→→ P→𝑝𝐴 =
P↠→

𝐴

P◦

Γ, 𝑥

Γ

𝜋2

𝑅
𝜀
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Σ | Γ ⊢ ctx
Σ, 𝛼 : Γ⇒ □|Γ ⊢ 𝛼 : □

Σ P→

Σ, 𝛼 P→→

Γ

𝛼

𝜋2

Σ′ ⊢ 𝜎 : Σ
Σ | Γ ⊢ 𝑡 : 𝐴

Σ′ | Γ[𝜎] ⊢ 𝑡 [𝜎] : 𝐴[𝜎] Σ

Σ′

P→→P→ P↠→

𝜎

𝐴

𝐴[𝜎]

𝜋2

Γ

Γ[𝜎]
𝑡

𝑡 [𝜎]

Σ | Γ ⊢ 𝐴 : □
Σ | Δ ⊢ 𝛾 : Γ

Σ | Δ ⊢ 𝐴[𝛾] : □
P→→

Σ

P→

𝐴 ↾ 𝛾 cartesian lift of 𝛾

𝐴

𝜋2

Γ

Δ

𝐴[𝛾]

𝛾 𝐴 ↾ 𝛾

Σ | Γ ⊢ 𝑡 : 𝐴
Σ | Δ ⊢ 𝛾 : Γ

Σ | Δ ⊢ 𝑡 [𝛾] : 𝐴[𝛾]

P→→

Σ

P→ P↠→

𝐴 ↾ 𝛾 and 𝑡 ↾ 𝛾 cartesian lifts of 𝛾

𝐴

𝜋2

ΓΔ

𝐴[𝛾]

𝑡

𝑡 [𝛾]

𝛾 𝐴 ↾ 𝛾

𝑡 ↾ 𝛾

Σ | Γ ⊢ 𝐴 : □

Σ, 𝛼 : Γ⇒ 𝐴|Γ ⊢ 𝛼 : 𝐴

Σ P→→

Σ, 𝛼 P↠→

𝐴

𝛼

Σ | Γ ⊢ 𝐴 : □

Σ | Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

Σ

P→→

P↠→

P→→

By Lemma 4𝐴

𝑅

𝐴[𝑝𝐴]

𝑥
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Σ |Γ ⊢ () : ()
Σ() =

Cat
P→P→

Cat//1
Γ

𝜂

Σ |Γ ⊢ 𝛾 : Δ
Σ |Δ ⊢ 𝐴

Σ |Γ ⊢ 𝑠 : 𝐴[𝛾]
Σ ⊢ ⟨𝛾, 𝑠⟩ : (Δ, 𝑥 : 𝐴)

P→→

P↠→

Σ P↠→ P→⟨𝛾, 𝑠⟩ =

𝑠

𝐴[𝛾]

𝑅

𝐴

Γ

Δ, 𝑥 : 𝐴

𝜂

𝐴 ↾ 𝛾

We can then recover the following rules from Uemura’s original presentation
of the logical framework.

(𝛼 : Γ⇒ □) ∈ Σ Σ | Δ ⊢ 𝛾 : Γ

Σ | Δ ⊢ 𝛼(𝛾) : □
(𝛼 : Γ⇒ 𝐴) ∈ Σ Σ | Δ ⊢ 𝛾 : Γ

Σ | Δ ⊢ 𝛼(𝛾) : 𝐴[𝛾]

Let us indeed focus on the first rule (the second is similar). The premise (𝛼 :
Γ ⇒ □) ∈ Σ entails that we have a weakening substitution 𝑤 from Σ to some
prefix Σ′, 𝛼 : Γ⇒ □ of Σ. Then we get:

Σ′, 𝛼 : Γ⇒ □ | Γ ⊢ 𝛼 : □ Σ ⊢ 𝑤 : Σ′

Σ | Γ ⊢ 𝛼[𝑤] : □
Σ | Δ ⊢ 𝛾 : Γ

Σ | Δ ⊢ 𝛼[𝑤] [𝛾] : □

Infinite SOGATs Note that Uemura allows a SOGAT Σ to consist of an infinite
well-ordered set of declaration of variables. This can be accounted by taking the
limit of all the the prefixes of Σ, interpreted as locally presentable categories,
with projections between them (which are all isofibrations, as can be seen below
from the definitions of SOGAT extensions by pullbacks), thanks to closure of
IRLPCAT under limits of cochains (see Proposition 16).

B.3 Small types

In this section we describe the structure that takes small types into account.

Proposition 23. The functor Pd→ → P→→ over Cat defines a class of small
types in the generalised CwF P↠→ → P→→

cod−−−→ P→, in the following sense:

– The functor 𝜋2 : Pd→ → P→ is a (split) fibration in RLPCAT/Cat;
– Pd→ → P→→ preserves (chosen) cartesian 2-cells.
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Remark 12. Note that the functor 𝜋2 : Pd→ → P→ is not a fibration in RLPCAT.

We can then interpret the judgements and rules for the kind ∗ of small types,
which are analogous to those for □ except that we need to replace P→→ with
Pd→ in the right places. For example Σ |Γ ⊢ 𝐴 : ∗ denotes a (right adjoint)
functor 𝐴 from Σ to Pd→ compatible with Γ : Σ → P→. Moreover, there is
an obvious coercion from 𝐴 : ∗ to 𝐴 : □ obtained by postcomposing with the
canonical projection Pd→ → P→→, accounting for the following rule

Σ | Γ ⊢ 𝐴 : ∗
Σ | Γ ⊢ 𝐴 : □

B.4 Dependent product

Proposition 24. The generalised CwF P↠→ → P→→
𝜋2−−→ P→ with class of

small types Pd→ → P→→ has dependent products with small domain in the
sense that there are functors 𝜆 and Π making the following below left square a
pullback, and making the right below square commute,

P↠(d→) P→(d→)

P→→P↠→

Pd→

P→

∏
𝜆

𝜋23

𝜋2

𝜋2 ,

where

– P→(d→) is the category consistings of natural models (𝐶op
𝑡 𝑦
−−→ Set,

⨖
𝑡𝑦op

𝑡𝑚−−→
Set) with a presheaf over

⨖
𝑡𝑚′, where 𝑡𝑚′ : 𝐶op → Set maps 𝑐 to

∑
𝐴∈𝑡 𝑦 (𝑐) 𝑡𝑚(𝑐, 𝐴);

– P↠(d→) is the same but equipped with a section of this presheaf.

Both are formally defined by the pullbacks below.

P↠(d→) Pd→

P→P→→

P→(d→)

P↠→

P◦

𝜋2

𝜋23

𝜋1(23)

Notation 6. Given outer commutative squares as below, summarised by the
following judgements (the gray parts are implicit in the diagrams), we denote
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the mediating morphisms to the pullbacks by 𝐴 ⊢ 𝐵 and 𝐴 ⊢ 𝑏.

P↠(d→)

Σ

Pd→ P→

P→→P→(d→)

Σ

Pd→ P→

P↠→

Σ |Γ, 𝑥 : 𝐴 ⊢ 𝐵 : □ Σ |Γ, 𝑥 : 𝐴 ⊢ 𝑏 : 𝐵

𝐴

P◦

𝐵

𝜋2

𝐴 ⊢ 𝐵

𝐴

P◦

𝑏

𝐴 ⊢ 𝑏

Remark 13. This is similar to the notion of dependent product type for the gen-
eralised CwF P↠→ → P→→

𝜋2−−→ P→ in the sense of Coraglia and Di Liberti [10,
Definition 3.5.1], except that the domain is restricted to small types.

When working with objects of P→(d→) , we sometimes omit the isomorphism∫
𝑡𝑚′ �

∫
𝑡𝑚 when it plays no particular role, that is, we work as if it were an

identity.

Remark 14. The bracketing in the notation P→(d→) or P↠(d→) is here to distin-
guish the definitions from the unbiased one where the domain of the top presheaf
is directly over the category of elements of 𝑡𝑚. The unbiased category is actually
isomorphic to the biased one.

Before proving Proposition 24, we show how it allows us to interpret the depen-
dent product of the logical framework.

Σ | Γ ⊢ 𝐴 : ∗
Σ | Γ, 𝑥 : 𝐴 ⊢ 𝐵 : □

Σ | Γ ⊢ (𝑥 : 𝐴) → 𝐵 : □
Σ P→(d→) P→→

𝐴 ⊢ 𝐵
∏

(𝑥 : 𝐴) → 𝐵

Σ | Γ ⊢ 𝐴 : ∗
Σ | Γ, 𝑥 : 𝐴 ⊢ 𝑏 : 𝐵

Σ | Γ ⊢ 𝜆(𝑥 : 𝐴).𝑏 : (𝑥 : 𝐴) → 𝐵 P↠(d→)Σ P↠→
𝐴 ⊢ 𝑏 𝜆

𝜆𝑥.𝑏

Σ | Γ ⊢ 𝐴 : ∗
Σ | Γ, 𝑥 : 𝐴 ⊢ 𝐵 : □

Σ | Γ ⊢ 𝑏 : (𝑥 : 𝐴) → 𝐵

Σ | Γ, 𝑥 : 𝐴 ⊢ app(𝑏) : 𝐵 P↠(d→)

ΣΣ

P→(d→)

P→→ P↠→P↠→

P↠(d→)

𝐴 ⊢ 𝐵

∏
𝑎𝑝𝑝(𝑏)

𝜆

𝑏
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We then recover the usual application rule as follows:

Σ | Γ ⊢ 𝐴 : ∗
Σ | Γ, 𝑥 : 𝐴 ⊢ 𝐵 : □

Σ | Γ ⊢ 𝑏 : (𝑥 : 𝐴) → 𝐵

Σ | Γ, 𝑥 : 𝐴 ⊢ app(𝑏) : 𝐵
Σ | Γ ⊢ 𝑖𝑑Γ : Γ Σ | Γ ⊢ 𝑎 : 𝐴

Σ | Γ ⊢ (𝑖𝑑Γ, 𝑎) : (Γ, 𝑥 : 𝐴)
Σ | Γ ⊢ app(𝑏) [𝑖𝑑Γ, 𝑎] : 𝐵[𝑖𝑑Γ, 𝑎]

The rest of this section is devoted to the proof of Proposition 24. Let us detail
the functors Π : P→(d→) → P→→ and 𝜆 : P↠(d→) → P↠→ that we are going to
build formally. Given 𝑡𝑦 : 𝐶op → Set, 𝑡𝑚 :

⨖
𝑡𝑦op → Set, 𝑋 :

⨖
𝑡𝑚′op → Set, the

image by Π is a functor
⨖
𝑡𝑦 → Set mapping a type 𝐴 in context Γ to 𝑌 (Γ, 𝐴) =

𝑋 (Γ.𝐴, 𝐴, 𝑣0). Given the same data and an additional section 𝑠𝑥 ∈ hom(1, 𝑋),
the image by 𝜆 is a section 𝑠𝑌 mapping (Γ, 𝐴) to 𝑥(Γ.𝐴, 𝐴, 𝑣0). Let us now build
these functors formally.

Building the functor 𝚷 The crucial observation is that (Γ.𝐴, 𝐴, 𝑣0) is the
image of (Γ, 𝐴) by the right adjoint var :

⨖
𝑡𝑦 →

⨖
𝑡𝑚, so that Π(𝑡𝑦, 𝑡𝑚, 𝑋) =

𝑋 ◦ var .

Remark 15. It follows from Uemura [34, Proposition 3.21] that the projection⨖
Π(𝑡𝑦, 𝑡𝑚, 𝑋) →

⨖
𝑡𝑦 is the pushforward of

⨖
𝑋 →

⨖
𝑡𝑚 along

⨖
𝑡𝑚 →

⨖
𝑡𝑦 in the

category of discrete fibrations over the base category.

Formally, Π is defined by lifting the bottom composite of 2-cells in the following
diagram, exploiting the split fibration P→

cod−−−→ Cat, where the natural isomor-
phism follows from Lemma 5.

Pd

P→(d→)

Pd→ Cat

P→

P→

P→→

�

𝜋23 cod

Π

P◦ dom

𝜋1(23) 𝜋1

𝜋2

𝜋1

dom

cod

var

Building the functor 𝝀 We directly build an isomorphism between P↠(d→)

and the pullback 𝑄 of Π along P↠→ → P→→ that is compatible with the pro-
jection P↠(d→) → P→(d→) .
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On objects Objects of P↠(d→) and 𝑄 share the following components:

– a presheaf 𝑡𝑦;
– a presheaf 𝑡𝑚 over

⨖
𝑡𝑦;

– a presheaf over
⨖
𝑡𝑚′, or equivalently, a presheaf 𝑋 over

⨖
𝑡𝑚;

– a right adjoint var :
⨖
𝑡𝑦 →

⨖
𝑡𝑚 to the canonical projection.

On top of that, an object of P↠(d→) includes a section 𝑠 : 1 → 𝑋, while an
object of 𝑄 includes a section 𝑠′ : 1→ 𝑋 ◦ varop . Clearly, from 𝑠 we can define 𝑠′
as 𝑠 ◦ varop . Conversely, from 𝑠′ we define 𝑠 by the diagram below. This defines
a bijection, by the mate correspondance.

⨖
𝑡𝑦op Set

⨖
𝑡𝑚op

⨖
𝑡𝑚op 1

varop

𝑋

𝜋op

𝑠′𝜂op

1

On morphisms Given objects (𝑡𝑦, 𝑡𝑚, 𝑋, var , 𝑠) and (𝑡𝑦′, 𝑡𝑚′, 𝑋 ′, var ′, 𝑠′) of P↠(d→) ,
a morphism between them and a morphism between their image by the object
bijection share the following components:

– a functor 𝐹 between the base categories;
– a natural transformation 𝑡𝑦𝐹 : 𝑡𝑦 → 𝑡𝑦′ ◦ 𝐹op ;
– a natural transformation 𝑡𝑚𝐹 : 𝑡𝑚 → 𝑡𝑚′ ◦

⨖
𝑡𝑦

op
𝐹

;
– a natural transformation 𝑋𝐹 : 𝑋 → 𝑋 ′ ◦

⨖
𝑡𝑚

op
𝐹

.

The difference is that a morphism in P↠(d→) requires compatibility with the
sections 𝑠 and 𝑠′ as in (3), while a morphism in P↠→ between their image
requires compatibiliy with the sections 𝑠 · varop and 𝑠 · var ′op , which is (3) but

pre-whiskered by
⨖
𝑡𝑦op

varop

−−−−→
⨖
𝑡𝑚op .

⨖
𝑡𝑚op Set

⨖
𝑡𝑚′op

=

⨖
𝑡𝑚op Set

⨖
𝑡𝑚′op

1

𝑋

⨖
𝑡𝑚

op
𝐹

𝑋 ′

1

⨖
𝑡𝑚

op
𝐹

𝑋 ′

1

𝑠

𝑋𝐹

𝑠′ (3)

The following lemma ensures that we indeed have a bijection.

Lemma 6. Equation (3) is satisfied if and only if it pre-whiskering by
⨖
varop

is.
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Proof. The only if part is clear. Conversely, it must be that the following equation
holds, since the blue part does, as the pre-whiskered equation.

⨖
𝑡𝑚op Set

⨖
𝑡𝑚′op

=

Set

⨖
𝑡𝑚′op

⨖
𝑡𝑦op

⨖
𝑡𝑚op

⨖
𝑡𝑚op

⨖
𝑡𝑦op

⨖
𝑡𝑚op

1

𝑋

⨖
𝑡𝑚

op
𝐹

𝑋 ′ 𝑋 ′

1

varop

⨖
𝑡𝑚

op
𝐹

1

𝜋op

varop

𝜋op

𝑠

𝑠′

𝑋𝐹

𝜂op 𝜂op

We conclude by the fact that 1 · 𝜂op is the identity natural transformation.

B.5 Extensional identity types

Proposition 25. The generalised CwF P↠→ → P→→
𝜋2−−→ P→ has extensional

identity type [10, Definition 3.6.1] in the sense that there are functors Id and refl
making the below triangle commutes and the below left square a pullback, where
P↠2→ is defined by the below right pullback.

P↠→

P↠→

P↠→

P↠2→

P→→

P→

P↠2→ P↠→

P→→

refl

Δ

Id

𝜋2

𝜋2

Notation 7. Given an outer commutative square as below, summarised by the
following judgements, we denote the mediating morphism to the pullback by 𝑎, 𝑏.

P↠→

P↠2→ P↠→

P→→

Σ

Σ |Γ ⊢ 𝑎 : 𝐴

Σ |Γ ⊢ 𝑏 : 𝐴

𝑏

𝑎

𝑎, 𝑏



38 Anonymous

Before proving Proposition 25, we show how it allows us to interpret the identity
type of the logical framework.

Σ | Γ ⊢ 𝐴 : □
Σ | Γ ⊢ 𝑎 : 𝐴
Σ | Γ ⊢ 𝑏 : 𝐴

Σ | Γ ⊢ 𝑎 =𝐴 𝑏 : □
Σ P↠2→ P→→

𝑎, 𝑏 Id

𝑎 = 𝑏

Σ | Γ ⊢ 𝐴 : □ Σ | Γ ⊢ 𝑎 : 𝐴

Σ | Γ ⊢ refl𝑎 : 𝑎 =𝐴 𝑎 Σ P↠→ P↠→
𝑎 refl

refl𝑎

Σ | Γ ⊢ 𝑐 : 𝑎 =𝐴 𝑏

Σ | Γ ⊢ 𝑎 ≡ 𝑏 : 𝐴
P↠2→

Σ

P↠→ P→→

P↠2→P↠→

Σ

P↠2→

P↠→

P↠→

𝑐

𝑖𝑑

𝑎, 𝑏

refl

Δ
Δ

𝑏𝑎
Δ

𝑎, 𝑏 𝑎, 𝑏

Σ | Γ ⊢ 𝑏 : 𝑎 =𝐴 𝑎

Σ | Γ ⊢ 𝑏 ≡ refl𝑎 : 𝑎 =𝐴 𝑎
P↠→

P↠→

P↠2→

P→→

Σ

P↠→

Σ

P↠→ P↠2→

P↠→

refl

Δ

Id

𝑒

𝑎, 𝑎

𝑒

refl

Δ

𝑎, 𝑎 𝑎

refl

The rest of this section is devoted to the proof of Proposition 25. Infor-
mally, the functor Id maps a presheaf 𝐴, a presheaf 𝐵 over

⨖
𝐴 and two sections

𝑠, 𝑠′ : 1 → 𝐵 to the equaliser 𝐸 of 𝑠, 𝑠′. More explicitely, 𝐸 (𝑐) is 1 if 𝑥𝑐 = 𝑥𝑐′ ,
or the empty set otherwise. The functor refl maps a presheaf 𝐴, a presheaf 𝐵
over

⨖
𝐴 and a section 𝑠 : 1 → 𝐵 to the unique section (which is the identity

morphism) of the terminal presheaf 1 over
⨖
𝐴.

Let us now build these functors formally.

Building the functor Id We construct Id by universal property of the pullback
defining P→→ in RLPCAT as below, where the blue arrow is defined in the top
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diagram.

P↠

P↠

P↠→ ×P→→ P↠→

P→→

Cat//Set⇒

Cat//Set

P→P→→ Cat

Cat//Set⇒ Cat//Set2

Cat//Set2 (Cat//Set)2

P↠→ ×P→→ P↠→ P↠→

P↠→

Id
𝑒𝑞𝑢𝑎𝑙𝑖𝑠𝑒𝑟

𝜋1

𝜋2

𝜋2 dom

dom

Cat//Setdom ,cod

Cat//Setdom ,cod

𝜋2

𝜋1

The equaliser functor maps two parallel natural transformations to their equalis-

ers. It is right adjoint to the functor Cat//Set
Cat//Set!
−−−−−−−→ Cat//Set⇒ and is thus in

RLPCAT.

Building the functor refl Similarly to what we did for the 𝜆 functor of the
dependent product in §B.4, we directly build an isomorphism between P↠→ and
the pullback 𝑄 of Id along P↠→ → P→.

On objects Objects of P↠→ and 𝑄 share the following components:

– a presheaf 𝐴;
– a presheaf 𝐵 over

⨖
𝑡𝑦;

– a section 𝑠 : 1→ 𝐵.

An object of P↠→ does not have more components, while an object of 𝑄 includes
another section 𝑠′ : 1 → 𝐵 as well as a section 𝑠′′ : 1 → 𝐸 of the equaliser 𝐸 of
𝑠, 𝑠′. By composing it with the equaliser map 𝐸 ↩→ 1, we conclude that 𝑠 must
be equal to 𝑠′, so that 𝐸 = 1 and 𝑠′′ is the identity map. As a consequence, the
two classes of objects are in bijective correspondance.

On morphisms Given objects (𝐴, 𝐵, 𝑠) and (𝐴′, 𝐵′, 𝑠′) of P↠→, a morphism be-
tween them consists of the following components:

– a functor 𝐹 between the base categories;
– a natural transformation 𝐴𝐹 : 𝐴→ 𝐴′ ◦ 𝐹op ;
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– a natural transformation 𝐵𝐹 : 𝐵→ 𝐵′ ◦
⨖
𝑡𝑦

op
𝐹

;
– compatible with the sections, in the sense that 𝐵𝐹 ◦ 𝑠 = 𝑠′ ·

⨖
𝐴
op
𝐹

.

It is straightforward to check that a morphism in 𝑄 between their images is
determined by the same data.

B.6 The empty context in type theories specified by SOGATs

Our semantics of SOGATs does not guarantee the existence of a terminal object
in the base category. For example, the SOGAT 𝑡𝑦 : □, 𝑡𝑚 : 𝑡𝑦 → ∗ is interpreted
as the category of natural models, without further enforcing the existence of the
empty context. This is easy to fix: given a SOGAT Σ, we can simply consider
the pullback of Σ→ Cat← Cat1 to recover the desired category of models.

C Diagram category

In this subsection, we show that RLPCAT is closed under a particular case of
the Grothendieck construction, namely the functor mapping any small category
C to the hom-category [C,E], for some fixed E ∈ RLPCAT. We also prove
that “change-of-base” functors [C,E] → [C,E′] live in (I)RLPCAT when the
underlying functor E→ E′ does. This is used in §B.

Definition 13. For any category E, we denote by Cat//E the category with

– as objects pairs of a small category C and a functor 𝑋 : Cop → E, and
– as morphisms (C, 𝑋) → (D, 𝑌 ) all functors 𝐹 : C→ D equipped with a natural

transformation 𝛼 as below.

Cop Dop

E

𝐹op

𝑋 𝑌

𝛼

Proposition 26. For any locally presentable category E, Cat//E is locally pre-
sentable.

Furthermore, for any functor 𝐹 : E→ E′, the postcomposition functor

Cat//𝐹 : Cat//E→ Cat//E′

(a) is a right adjoint when 𝐹 is one, and
(b) is an isofibration when 𝐹 is one.

Corollary 2. For any small category C, the canonical functor Cat//SetC →
(Cat//Set)C is in RLPCAT.

Proof. By universal property of (Cat//Set)C and Proposition 2, it suffices to
show that each projection functor Cat//SetC → Cat//Set is in RLPCAT, which
follows from Proposition 26 with 𝐹 : 1→ C picking the corresponding object.
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Example 11. Let us consider the refinement

Cat//Setcod : Cat//Set2 → Cat//Set.

An object in Cat//Set2 consists of a small category C equipped with a natural
transformation 𝑝 : 𝑋 → 𝑌 in [Cop , Set]. And the forgetful functor maps this
to the pair (C, 𝑌 ). Pulling back along this functor can be thought of as the
refinement “adding a set 𝑋 with projection to 𝑌 , all indexed over C”.

Corollary 3. For any small C, all functors below

Cat//SetC → (Cat//Set)C ≃ DFibC ↩→ ([2,Cat])C domC ,codC

−−−−−−−−−→ CatC

live in RLPCAT.

Remark 16. Taking the composite with C = 1 yields the Grothendieck construc-
tion functor

⨖
: Cat//Set→ Cat.

Notation 8. We call
⨖C the composite with dom, and domC the one with cod

(because it takes pairs (C, 𝐹) with 𝐹 ∈ [Cop , Set] to C).

D Restricting along an injective-on-object functor

This section is devoted to the proof of the following statement, used in §A.
AL: En fait c’est un cas particulier pullback-power axiom bien connu que verifie
les cat de modeles Cat-enrichie comme cat (cf par exemple Lack’s homotopy
theoretical aspects of 2-monads), en prenant l’un des objets implique comme
l’objet terminal. Evidemment le theoreme ci-dessous est plus general, mais cette
generalisation n’est pas forcement utile. Dans le cas CAT, c’est aussi enonce dans
"pullbacks equivalent to pseudopullbacks", THm 2

Theorem 9. Let 𝑉 be a symmetric closed monoidal category, 𝐹 : C → D a 𝑉-
functor injective on objects, and E be a 𝑉-category. Then, the restriction functor
𝐹∗ : 𝑉-Cat(D,E) → 𝑉-Cat(C,E) is an isofibration.

This is a direct consequence of the following result, taking the right functor to
be the identity functor on E.

Proposition 27. Let 𝑉 be a symmetric closed monoidal category, and consider
a 𝑉-natural isomorphism 𝛼 as below left such that the left functor is injective
on objects and the right functor is an equivalence, i.e., a fully faithful 𝑉-functor
essentially surjective on objects. Then, there exists a diagonal 𝑉-functor as below
right sucht that

– The top triangle commutes strictly;
– the bottom triangle commutes up to a natural isomorphism;
– the pasting of the two triangles yields 𝛼.
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C

D B

E

𝛼

�
=

C

D B

E

�

𝐹

𝑉

𝑈

𝐺

𝐹

𝑉

𝑈

𝐺

𝐾

Proof. For each object 𝑑 of D, we define the object 𝐾𝑑 of E as 𝐺𝑐 if 𝑑 = 𝐹𝑐 for
some object 𝑐 of C, and as some preimage 𝑈−1𝑉𝑑 of 𝑉𝑑 by the (surjective) 𝑉-
functor 𝑈 otherwise. Then, for each object 𝑑, we have a 𝑉-natural isomorphism
𝛽𝑑 : E(𝐾𝑑,−) � B(𝑉𝑑,𝑈−), in the sense of [5, Proposition 6.2.8]. Indeed,

– in the first case, E(𝐾𝑑,−) = B(𝐺𝑐,−) � B(𝑈𝐺𝑐,𝑈−) � B(𝑉𝐹𝑐,𝑈−), where
the first isomorphism comes from the fact that 𝑈 is fully faithful;

– in the second case, E(𝐾𝑑,−) � B(𝑈𝐾𝑑,𝑈−) � B(𝑉𝑑,𝑈−) where the first
isomorphism comes again from the fact that𝑈 is fully faithful, and the second
one from the definition of 𝑑.

By Kelly [23, §1.10], there exists a unique 𝑉-functor 𝐾 : B→ E such that the
above isomorphisms are natural in 𝑑.

Let us show that the upper triangle commutes strictly. On objects, it is by
definition. On morphisms, we show that the top and left morphisms below from
C(𝑐, 𝑐′) to E(𝐺𝑐, 𝐺𝑐′) are equal, when post-composed with the same isomor-
phisms, with references to Kelly [23] for the commutation of the subdiagrams.

B(𝑉𝐹𝑐,𝑉𝐹𝑐′)

C(𝑐, 𝑐′)

D(𝐹𝑐, 𝐹𝑐′)

E(𝐺𝑐, 𝐺𝑐′) B(𝑈𝐺𝑐,𝑈𝐺𝑐′)

E(𝐺𝑐, 𝐺𝑐′)

B(𝑉𝐹𝑐,𝑈𝐺𝑐′)

B(𝑈𝐺𝑐,𝑈𝐺𝑐′)

naturality of 𝛼

(1.39)

[B(𝑉𝐹𝑐′,𝑈𝐺𝑐′),B(𝑉𝐹𝑐,𝑈𝐺𝑐′)]

[𝐼,B(𝑉𝐹𝑐,𝑈𝐺𝑐′)]

(1.49) (1.47)

𝐹

𝐾

𝑈

𝐺

𝑉

B(𝑉𝐹𝑐, 𝛼𝑐′ )

D(𝛼𝑐,𝑈𝐺𝑐′)

𝑈

D(𝛼𝑐,𝑈𝐺𝑐′)

[𝜂,B(𝑉𝐹𝑐,𝑈𝐺𝑐′)]

�
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We now show that the lower triangle commutes up to isomorphism. First

we build a 𝑉-natural transformation 𝐼 → B(𝑉𝑑,𝑈𝐾𝑑) as 𝐼
𝑖𝑑𝐾𝑑−−−−→ E(𝐾𝑑, 𝐾𝑑) �

B(𝑉𝑑,𝑈𝐾𝑑) by applying the extra-variable form of the weak Yoneda lemma [23,
§1.9] to E(𝐾𝑑,−) � B(𝑉𝑑,𝑈−). This is actually a pointwise isomorphism: when
𝑑 = 𝐹𝑐, then we get

𝐼 → E(𝐾𝑑, 𝐾𝑑) 𝑈−→ B(𝑈𝐾𝑑,𝑈𝐾𝑑) = B(𝑈𝐺𝑐,𝑈𝐾𝑑)
B(𝛼𝑐 ,𝑈𝐾𝑑)−−−−−−−−−−→ B(𝑉𝐹𝑐,𝑈𝐾𝑑)

(4)
otherwise we get

𝐼 → E(𝐾𝑑, 𝐾𝑑) 𝑈−→ B(𝑈𝐾𝑑,𝑈𝐾𝑑)
B(�,𝑈𝐾𝑑)
−−−−−−−−−→ B(𝑉𝑑,𝑈𝐾𝑑).

In both cases, the first two morphisms yield the identity 𝑉-morphism 𝐼 →
B(𝑈𝐾𝑑,𝑈𝐾𝑑). Since we compose it with a 𝑉-isomorphism in both case, we get
an isomorphism.

Finally, the diagram belows shows that whiskering this isomorphism yields
𝛼, where the top-right branch accounts for the the isomorphism by (4), with
references to Kelly [23] for the commutation of the subdiagrams.

𝐼 B(𝑈𝐺𝑐,𝑈𝐺𝑐)

B(𝑉𝐹𝑐,𝑈𝐺𝑐)

(1.31)
B(𝑈𝐺𝑐,𝑈𝐺𝑐) ⊗ 𝐼

B(𝑈𝐺𝑐,𝑈𝐺𝑐) ⊗ B(𝑉𝐹𝑐,𝑈𝐺𝑐)

(1.4)

𝑖𝑑

B(𝛼𝑐,𝑈𝐺𝑐)
𝛼𝑐

�

B(𝑈𝐺𝑐,𝑈𝐺𝑐) ⊗ 𝛼𝑐

◦

E Summary of the constructions in RLPCAT

In this section we list all the constructions we have used in the main body of the
paper.

E.1 Base cases

The categories Set and Cat are locally presentable. Moreover, any representable
functor from a locally presentable category to Set is right adjoint.
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E.2 1-dimensional cotensoring

Construction 1. Input A locally presentable category C and a small category D.
Output A locally presentable category CD.
Explicit description The category CD is the category of functors from D to C.

The output category CD has a universal property that enables the following
construction.

Construction 2. Input A functor from a small category D to RLPCAT(B,C);
Output A right adjoint functor from B to CD.

Moreover we have the following property.

Proposition 28. Consider the right adjoint 𝐺𝐹 : BE → CD induced by a func-
tor 𝐹 : D → E between small categories and a right adjoint 𝐺 : B → C by
Construction 2. If 𝐹 is injective-on-object and 𝐺 is an isofibration, then so is
𝐺𝐹 .

We also have the limiting cotensoring.

Construction 3. Input A small category D and a locally presentable category C;
Output A fully faithful embedding isofibrant functor CD⊥,lim ↩→ CD⊥ in RLPCAT.
Explicit description This is the full subcategory of limiting cones in C for a

diagram of shape D.

E.3 2-dimensional cotensoring

Construction 4. Input A small 2-category D.
Output A locally presentable category CatD.
Explicit description The category CatD is the category of 2-functors from D

to Cat and strict 2-natural transformations between them.

The category CatD has a universal property that enables the following construc-
tion.

Construction 5. Input A 2-functor D→ RLPCAT(B,Cat), where the 2-cells of
RLPCAT(B,Cat) are the modifications;

Output A right adjoint functor from B to CatD.

Proposition 29. Consider the right adjoint C𝐹 : CE → CD induced by a functor
𝐹 : D→ E between small categories by Construction 5. If 𝐹 is injective-on-object,
then C𝐹 is an isofibration.
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E.4 Pullback

Construction 6. Input A span C
𝐹−→ D

𝐺←− E in RLPCAT where 𝐺 is an isofi-
bration;

Output A cospan C
𝑝C←−− C×D E

𝑝E−−→ E that induces a pullback both in CAT and
and RLPCAT, and such that 𝑝C is an isofibration;

The pullback property enables the following construction.

Construction 7. Input A commutative square in RLPCAT where the right ar-
row is an isofibration;

Output A right adjoint to the pullback making the triangles commutes as below.

B

C D

EC ×D E

E.5 Fibrations

The fact that the forgetful 2-functor RLPCAT→ CAT creates fibrations enables
the following construction.

Construction 8. Input A natural transformation as below left, such that all the
functors are right adjoints, and the right functor is moreover a fibration;

Output A right adjoint and natural transformation as below right, in red, such
that the triangle below right commutes and the two induced natural transfor-
mations below left and right are equal.

𝑋 𝐵

𝐸

𝑋 𝐵

𝐸

=

E.6 Right orthogonal class (derived)

This construction is derived from the previous ones. We present it because it is
involved in the next one.

Construction 9. Input A set of morphisms 𝐽 in some locally presentable cate-
gory C.

Output A full subcategory embedding 𝐽⊥ ↩→ C2 in IRLPCAT
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Explicit description The category 𝐽⊥ is the full subcategory of C2 spaned by
morphisms having the right lifting property with respect to morphisms in 𝐽.
This is defined as the following pullback, where I denotes the walking isomor-

phism.
𝐽⊥

C2 Set2×𝐽

SetI×𝐽

The right functor is an isofibration by Proposition 29, and the bottom functor
is defined from Construction 2 by the family of 2-cells below, inducing a functor
from 𝐽 × 2 to RLPCAT(C2, Set).

C2 Set

𝑎

𝑏

𝑎

𝑏

𝑏

𝑏

𝛾 𝑗

y 𝑗

yid𝑏

𝑗 ∈ 𝐽 y𝛾 𝑗 𝑗

𝑗

E.7 Relative opfibrations for orthogonal classes

Construction 10. Input A set of morphisms 𝐽 in some locally presentable cate-
gory C, and a natural transformation as below left, such that all the functors
are right adjoints.

Output A right adjoint and natural transformation as below right, in red, such
that the square below right commutes and the two induced natural transfor-
mations below left and right are equal.

𝑋

C

𝐽⊥

=

𝐽⊥

𝑋

C

𝐽⊥

𝐽⊥

cod

cod

dom

cod

cod
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